Control of magnetite nanocrystal morphology in magnetotactic bacteria by regulation of mms7 gene expression
نویسندگان
چکیده
Living organisms can produce inorganic materials with unique structure and properties. The biomineralization process is of great interest as it forms a source of inspiration for the development of methods for production of diverse inorganic materials under mild conditions. Nonetheless, regulation of biomineralization is still a challenging task. Magnetotactic bacteria produce chains of a prokaryotic organelle comprising a membrane-enveloped single-crystal magnetite with species-specific morphology. Here, we describe regulation of magnetite biomineralization through controlled expression of the mms7 gene, which plays key roles in the control of crystal growth and morphology of magnetite crystals in magnetotactic bacteria. Regulation of the expression level of Mms7 in bacterial cells enables switching of the crystal shape from dumbbell-like to spherical. The successful regulation of magnetite biomineralization opens the door to production of magnetite nanocrystals of desired size and morphology.
منابع مشابه
Isolation of obligately alkaliphilic magnetotactic bacteria from extremely alkaline environments.
Large numbers of magnetotactic bacteria were discovered in mud and water samples collected from a number of highly alkaline aquatic environments with pH values of ≈ 9.5. These bacteria were helical in morphology and biomineralized chains of bullet-shaped crystals of magnetite and were present in all the highly alkaline sites sampled. Three strains from different sites were isolated and cultured...
متن کاملMagnetosomes and magnetite crystals produced by magnetotactic bacteria as resolved by atomic force microscopy and transmission electron microscopy.
Atomic force microscopy (AFM) was used in concert with transmission electron microscopy (TEM) to image magnetotactic bacteria (Magnetospirillum gryphiswaldense MSR-1 and Magnetospirillum magneticum AMB-1), magnetosomes, and purified Mms6 proteins. Mms6 is a protein that is associated with magnetosomes in M. magneticum AMB-1 and is believed to control the synthesis of magnetite (Fe(3)O(4)) withi...
متن کاملA Comparison between Chemical Synthesis Magnetite Nanoparticles and Biosynthesis Magnetite
The preparation of Fe3O4 from ferrous salt by air in alkaline aqueous solution at various temperatures was proposed. The synthetic magnetites have different particle size distributions. We studied the properties of the magnetite prepared by chemical methods compared with magnetotactic bacterial nanoparticles. The results show that crystallite size, morphology, and particle size distribution of ...
متن کاملModerately thermophilic magnetotactic bacteria from hot springs in Nevada.
Populations of a moderately thermophilic magnetotactic bacterium were discovered in Great Boiling Springs, Nevada, ranging from 32 to 63 degrees C. Cells were small, Gram-negative, vibrioid to helicoid in morphology, and biomineralized a chain of bullet-shaped magnetite magnetosomes. Phylogenetically, based on 16S rRNA gene sequencing, the organism belongs to the phylum Nitrospirae.
متن کاملThe Isolation and Characterization of Magnetotactic Bacteria from Iron Ore Soil for Synthesis of Magnetic Nanoparticles as Potential Use in Magnetic Hyperthermia
Magnetotatic bacteria have been isolated from iron cap belt of Cuddegali Voril Soddo iron ore mine. Here magnetic measurement and non magnetic analysis helps to detect biogenic magnetite in soil sample. The cultivation of magnetotactic bacteria was done in modified enrichment medium and incubated at room temperature (25–30 C). A short rod of magnetotactic bacteria contained two or more magnetos...
متن کامل