Spin-dependent quantum interference in photoemission process from spin-orbit coupled states

نویسندگان

  • Koichiro Yaji
  • Kenta Kuroda
  • Sogen Toyohisa
  • Ayumi Harasawa
  • Yukiaki Ishida
  • Shuntaro Watanabe
  • Chuangtian Chen
  • Katsuyoshi Kobayashi
  • Fumio Komori
  • Shik Shin
چکیده

Spin-orbit interaction entangles the orbitals with the different spins. The spin-orbital-entangled states were discovered in surface states of topological insulators. However, the spin-orbital-entanglement is not specialized in the topological surface states. Here, we show the spin-orbital texture in a surface state of Bi(111) by laser-based spin- and angle-resolved photoelectron spectroscopy (laser-SARPES) and describe three-dimensional spin-rotation effect in photoemission resulting from spin-dependent quantum interference. Our model reveals that, in the spin-orbit-coupled systems, the spins pointing to the mutually opposite directions are independently locked to the orbital symmetries. Furthermore, direct detection of coherent spin phenomena by laser-SARPES enables us to clarify the phase of the dipole transition matrix element responsible for the spin direction in photoexcited states. These results permit the tuning of the spin polarization of optically excited electrons in solids with strong spin-orbit interaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Interference Control of Ballistic Magneto- resistance in a Magnetic Nanowire Containing Two Atomic- Size Domain Walls

The magnetoresistance of a one-dimensional electron gas in a metallic ferromagnetic nanowire containing two atomic-size domain walls has been investigated in the presence of spin-orbit interaction. The magnetoresistance is calculated in the ballistic regime, within the Landauer-Büttiker formalism. It has been demonstrated that the conductance of a magnetic nanowire with double domain walls...

متن کامل

Energy states and exchange energy of coupled double quantum dot in a magnetic field

The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...

متن کامل

Energy states and exchange energy of coupled double quantum dot in a magnetic field

The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...

متن کامل

Observation of a warped helical spin texture in Bi2Se3 from circular dichroism angle-resolved photoemission spectroscopy.

A differential coupling of topological surface states to left- versus right-circularly polarized light is the basis of many optospintronics applications of topological insulators. Here we report direct evidence of circular dichroism from the surface states of Bi(2)Se(3) using laser-based time-of-flight angle-resolved photoemission spectroscopy. By employing a novel sample rotational analysis, w...

متن کامل

What can we learn about the dynamics of transported spins by measuring shot noise in spin - orbit - coupled nanostructures ?

We review recent studies of the shot noise of spin-polarized charge currents and pure spin currents in multiterminal semiconductor nanostructures, while focusing on the effects brought by intrinsic Rashba spin-orbit (SO) coupling and/or extrinsic SO scattering off impurities. By generalizing the scattering theory of quantum shot noise to include the full spin-density matrix of electrons injecte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017