Bacterial 2,4-Dioxygenases: New Members of the a/b Hydrolase-Fold Superfamily of Enzymes Functionally Related to Serine Hydrolases
نویسندگان
چکیده
1H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase (Qdo) from Pseudomonas putida 33/1 and 1H-3-hydroxy-4oxoquinaldine 2,4-dioxygenase (Hod) from Arthrobacter ilicis Rü61a catalyze an N-heterocyclic-ring cleavage reaction, generating N-formylanthranilate and N-acetylanthranilate, respectively, and carbon monoxide. Amino acid sequence comparisons between Qdo, Hod, and a number of proteins belonging to the a/b hydrolase-fold superfamily of enzymes and analysis of the similarity between the predicted secondary structures of the 2,4-dioxygenases and the known secondary structure of haloalkane dehalogenase from Xanthobacter autotrophicus GJ10 strongly suggested that Qdo and Hod are structurally related to the a/b hydrolase-fold enzymes. The residues S95 and H244 of Qdo were found to be arranged like the catalytic nucleophilic residue and the catalytic histidine, respectively, of the a/b hydrolase-fold enzymes. Investigation of the potential functional significance of these and other residues of Qdo through site-directed mutagenesis supported the hypothesis that Qdo is structurally as well as functionally related to serine hydrolases, with S95 being a possible catalytic nucleophile and H244 being a possible catalytic base. A hypothetical reaction mechanism for Qdo-catalyzed 2,4-dioxygenolysis, involving formation of an ester bond between the catalytic serine residue and the carbonyl carbon of the substrate and subsequent dioxygenolysis of the covalently bound anionic intermediate, is discussed.
منابع مشابه
Bacterial 2,4-dioxygenases: new members of the alpha/beta hydrolase-fold superfamily of enzymes functionally related to serine hydrolases.
1H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase (Qdo) from Pseudomonas putida 33/1 and 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (Hod) from Arthrobacter ilicis Rü61a catalyze an N-heterocyclic-ring cleavage reaction, generating N-formylanthranilate and N-acetylanthranilate, respectively, and carbon monoxide. Amino acid sequence comparisons between Qdo, Hod, and a number of proteins belonging to ...
متن کاملIdentification of the Mg2+-binding site in the P-type ATPase and phosphatase members of the HAD (haloacid dehalogenase) superfamily by structural similarity to the response regulator protein CheY.
The large HAD (haloacid dehalogenase) superfamily of hydrolases comprises P-type ATPases, phosphatases, epoxide hydrolases and L-2-haloacid dehalogenases. A comparison of the three-dimensional structure of L-2-haloacid dehalogenase with that of the response regulator protein CheY allowed the assignment of a conserved pair of aspartate residues as the Mg2+-binding site in the P-type ATPase and p...
متن کاملA New Domain Family in the Superfamily of Alkaline Phosphatases
During the course of our large-scale genome analysis a conserved domain, currently detectable only in the genomes of Drosophila melanogaster, Caenorhabditis elegans and Anopheles gambiae, has been identified. The function of this domain is currently unknown and no function annotation is provided for this domain in the publicly available genomic, protein family and sequence databases. The search...
متن کاملA new variant of the Ntn hydrolase fold revealed by the crystal structure of L-aminopeptidase D-ala-esterase/amidase from Ochrobactrum anthropi.
BACKGROUND The L-aminopeptidase D-Ala-esterase/amidase from Ochrobactrum anthropi (DmpA) releases the N-terminal L and/or D-Ala residues from peptide substrates. This is the only known enzyme to liberate N-terminal amino acids with both D and L stereospecificity. The DmpA active form is an alphabeta heterodimer, which results from a putative autocatalytic cleavage of an inactive precursor polyp...
متن کاملMisclassification of PfEH1 and PfEH2 as Epoxide Hydrolases
In their recent article (1), Spillman and colleagues report the two Plasmodium falciparum proteins PfEH1 and PfEH2 to be two novel epoxide hydrolases with an atypical active-site architecture. We strongly believe that this conclusion is wrong for the reasons detailed in the following. Spillman et al. start from the observation that, based on sequence identity, epoxide hydrolases from the / hydr...
متن کامل