Calcium/Calmodulin-Dependent Protein Kinase Is Negatively and Positively Regulated by Calcium, Providing a Mechanism for Decoding Calcium Responses during Symbiosis SignalingW OPEN

نویسندگان

  • J. Benjamin Miller
  • Amitesh Pratap
  • Akira Miyahara
  • Liang Zhou
  • Stephen Bornemann
  • Richard J. Morris
  • Giles E.D. Oldroyd
  • John Innes
چکیده

The establishment of symbiotic associations in plants requires calcium oscillations that must be decoded to invoke downstream developmental programs. In animal systems, comparable calcium oscillations are decoded by calmodulin (CaM)–dependent protein kinases, but symbiotic signaling involves a calcium/CaM–dependent protein kinase (CCaMK) that is unique to plants. CCaMK differs from the animal CaM kinases by its dual ability to bind free calcium, via calcium binding EFhand domains on the protein, or to bind calcium complexed with CaM, via a CaM binding domain. In this study, we dissect this dual regulation of CCaMK by calcium. We find that calcium binding to the EF-hand domains promotes autophosphorylation, which negatively regulates CCaMK by stabilizing the inactive state of the protein. By contrast, calcium-dependent CaM binding overrides the effects of autophosphorylation and activates the protein. The differential calcium binding affinities of the EF-hand domains compared with those of CaM suggest that CCaMK is maintained in the inactive state at basal calcium concentrations and is activated via CaM binding during calcium oscillations. This work provides a model for decoding calcium oscillations that uses differential calcium binding affinities to create a robust molecular switch that is responsive to calcium concentrations associated with both the basal state and with oscillations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium/Calmodulin-dependent protein kinase is negatively and positively regulated by calcium, providing a mechanism for decoding calcium responses during symbiosis signaling.

The establishment of symbiotic associations in plants requires calcium oscillations that must be decoded to invoke downstream developmental programs. In animal systems, comparable calcium oscillations are decoded by calmodulin (CaM)-dependent protein kinases, but symbiotic signaling involves a calcium/CaM-dependent protein kinase (CCaMK) that is unique to plants. CCaMK differs from the animal C...

متن کامل

Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression

Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...

متن کامل

Gene Expression Profile of Calcium/Calmodulin-Dependent Protein Kinase IIα in the Rat Hippocampus during Morphine Withdrawal

Introduction: Calcium/calmodulin-dependent protein kinase II (CaMKII) is highly expressed in the hippocampus, which has a pivotal role in reward-related memories and morphine dependence. Methods: In the present study, morphine tolerance was induced in male Wistar rats by 7 days repeated morphine injections once daily, and then gene expression profile of α-isoform of CaMKII (CaMKIIα) in the hipp...

متن کامل

W342F Mutation in CCaMK Enhances Its Affinity to Calmodulin But Compromises Its Role in Supporting Root Nodule Symbiosis in Medicago truncatula

The calcium/calmodulin-dependent protein kinase (CCaMK) is regulated by free Ca2+ and Ca2+-loaded calmodulin. This dual binding is believed to be involved in its regulation and associated physiological functions, although direct experimental evidence for this is lacking. Here we document that site-directed mutations in the calmodulin-binding domain of CCaMK alters its binding capacity to calmod...

متن کامل

Death-Associated Protein Kinase Activity Is Regulated by Coupled Calcium/Calmodulin Binding to Two Distinct Sites

The regulation of many protein kinases by binding to calcium/calmodulin connects two principal mechanisms in signaling processes: protein phosphorylation and responses to dose- and time-dependent calcium signals. We used the calcium/calmodulin-dependent members of the death-associated protein kinase (DAPK) family to investigate the role of a basic DAPK signature loop near the kinase active site...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014