Temperature dependent change in equilibrium elastic modulus after thermally induced stress relaxation in porcine septal cartilage.
نویسندگان
چکیده
BACKGROUND AND OBJECTIVES Laser cartilage reshaping (LCR) is a promising method for the in situ treatment of structural deformities in the nasal septum, external ear and trachea. Laser heating leads to changes in cartilage mechanical properties and produces relaxation of internal stress allowing formation of a new stable shape. While some animal and preliminary human studies have demonstrated clinical feasibility of LCR, application of the method outside specialized centers requires a better understanding of the evolution of cartilage mechanical properties with temperature. The purpose of this study was to (1) develop a method for reliable evaluation of mechanical changes in the porcine septal cartilage undergoing stress relaxation during laser heating and (2) model the mechanical changes in cartilage at steady state following laser heating. STUDY DESIGN/MATERIALS AND METHODS Rectangular cartilage specimens harvested from porcine septum were heated uniformly by a radio-frequency (RF) electric field (500 kHz) for 8 and 12 seconds to maximum temperatures from 50 to 90 degrees C. Cylindrical samples were fashioned from the heated specimens and their equilibrium elastic modulus was measured in a step unconfined compression experiment. Functional dependencies of the elastic modulus and maximum temperature were interpolated from the measurements. Profiles of the elastic modulus produced after 8 and 12 seconds of laser irradiation (Nd:YAG, lambda = 1.34 microm, spot diameter 4.8 mm, laser power 8 W) were calculated from interpolation functions and surface temperature histories measured with a thermal camera. The calculated elastic modulus profiles were incorporated into a numerical model of uniaxial unconfined compression of laser irradiated cylindrical samples. The reaction force to a 0.1 compressive strain was calculated and compared with the reaction force obtained in analogous mechanical measurements experiment. RESULTS RF heating of rectangular cartilage sample produces a spatially uniform temperature field (temperature variations < or = 4 degrees C) in a central region of the sample which is also large enough for reliable mechanical testing. Output power adjustment of the RF generator allows production of temperature histories that are very similar to those produced by laser heating at temperatures above 60 degrees C. This allows creation of RF cartilage samples with mechanical properties similar to laser irradiated cartilage, however with a spatially uniform temperature field. Cartilage equilibrium elastic modulus as a function of peak temperature were obtained from the mechanical testing of RF heated samples. In the temperature interval from 60 to 80 degrees C, the equilibrium modulus decreased from 0.08+/- 0.01 MPa to 0.016+/-0.007 MPa, respectively. The results of the numerical simulation of uniaxial compression of laser heated samples demonstrate good correlation with experimentally obtained reaction force. CONCLUSIONS The thermal history and corresponding thermally induced modification of mechanical properties of laser irradiated septal cartilage can be mimicked by heating tissue samples with RF electric current with the added advantage of a uniform temperature profile. The spatial distribution of the mechanical properties obtained in septal cartilage after laser irradiation could be computed from mechanical testing of RF heated samples and used for numerical simulation of LCR procedure. Generalization of this methodology to incorporate orthogonal mechanical properties may aid in optimizing clinical laser cartilage reshaping procedures.
منابع مشابه
Mechanical properties of porcine cartilage after uniform RF heating.
BACKGROUND AND OBJECTIVES Thermally mediated modalities of cartilage reshaping utilize localized heating of cartilage combined with mechanical deformation to achieve new geometries. We sought to determine the steady state elastic modulus of thermally modified cartilage without deformation, as this provides a constraint in mechanical models of the shape change process. STUDY DESIGN/MATERIALS A...
متن کاملCharacterization of temperature dependent mechanical behavior of cartilage.
BACKGROUND AND OBJECTIVES Few quantitative studies have investigated the temperature dependent viscoelastic properties of cartilage tissue. Cartilage softens and can be reshaped when heated using laser, RF, or contact heating sources. The objectives of this study were to: (1) measure temperature dependent flexural storage moduli and mechanical relaxation in cartilage, (2) determine the impact o...
متن کاملComparison of human and animal femoral head chondral properties and geometries.
Investigations into tissue-preserving orthopaedic treatments should consider the tribology of articular cartilage; where simulations using animal joints are a predominant choice. However, very few studies have investigated the differences between human and animal cartilage. The aim of the present study was to characterise the differences in geometry and mechanical properties of human, porcine, ...
متن کاملThermally-induced change in the relaxation behavior of skin tissue.
Skin biothermomechanics is highly interdisciplinary, involving bioheat transfer, burn damage, biomechanics, and physiology. Characterization of the thermomechanical behavior of skin tissue is of great importance and can contribute to a variety of medical applications. However, few quantitative studies have been conducted on the thermally-dependent mechanical properties of skin tissue. The aim o...
متن کاملTemperature Dependence of the Dislocation Contribution to the Modulus Defect
The dislocation contribution to the modulus defect AG/G has been found to be temperature dependent. It is shown that a temperature dependent modulus defect in reasonable agreement with experiment can be obtained by calculating the thermal ly averaged displacement 5 for a string model with Cottrell pinning point interactions using cl assical statistical mechanics. The experimental results of Bau...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lasers in surgery and medicine
دوره 40 3 شماره
صفحات -
تاریخ انتشار 2008