Liquid crystalline states for two-dimensional electrons in strong magnetic fields
نویسندگان
چکیده
Based on the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) theory of two-dimensional melting and the analogy between Laughlin states and the two-dimensional one-component plasma (2DOCP), we investigate the possibility of liquid crystalline states in a single Landau level (LL). We introduce many-body trial wavefunctions that are translationally invariant but posess 2-fold (i.e. nematic ), 4-fold (tetratic) or 6-fold (hexatic) broken rotational symmetry at respective filling factors ν = 1/3, 1/5 and 1/7 of the valence LL. We find that the above liquid crystalline states exhibit a soft charge density wave (CDW) which underlies the translationally invariant state but which is destroyed by quantum fluctuations. By means of Monte Carlo (MC) simulations, we determine that, for a considerable variety of interaction potentials, the anisotropic states are energetically unfavorable for the lowest and first excited LL’s (with index L = 0, 1), whereas the nematic is favorable at the second excited LL (L = 2).
منابع مشابه
Structural properties of electrons in quantum dots in high magnetic fields: Crystalline character of cusp states and excitation spectra
The crystalline or liquid character of the downward cusp states in N-electron parabolic quantum dots at high magnetic fields is investigated using conditional probability distributions obtained from exact diagonalization. These states are of crystalline character for fractional fillings covering both low and high values, unlike the liquid Jastrow-Laughlin wave functions, but in remarkable agree...
متن کاملAn incompressible state of a photo-excited electron gas
Two-dimensional electrons in a magnetic field can form new states of matter characterized by topological properties and strong electronic correlations as displayed in the integer and fractional quantum Hall states. In these states, the electron liquid displays several spectacular characteristics, which manifest themselves in transport experiments with the quantization of the Hall resistance and...
متن کاملGate-tunable polarized phase of two-dimensional electrons at the LaAlO3/SrTiO3 interface.
Controlling the coupling between localized spins and itinerant electrons can lead to exotic magnetic states. A novel system featuring local magnetic moments and extended 2D electrons is the interface between LaAlO3 and SrTiO3. The magnetism of the interface, however, was observed to be insensitive to the presence of these electrons and is believed to arise solely from extrinsic sources like oxy...
متن کاملCalculation of Quasi-one-dimensional Interacting Electron Gas Using the Hartree-Fock Method
In this paper, the Hartree-Fock method has been formulated to investigate some of the ground state properties of quasi-one-dimensional interacting electron gas in the presence of the magnetic field. The bare coulomb interaction between electrons has been assumed. For this system, we have also computed some of its thermodynamic and magnetic properties such as the energy, pressure, incompressibil...
متن کاملReduction of photon contamination in electron therapy of cancer with magnetic fields
Introduction: Photon contamination is a restriction on treatment with electron that increase dose to healthy tissue below the tumor. The aim of this study is to reduce the photon contamination using a magnet system. Materials and Methods: A mini-applicator equipped with two neodymium boron permanent magnets was designed which make it possible to adjust the d...
متن کامل