Initial stages in the morphogenesis of nitrogen-fixing stem nodules of Sesbania rostrata.

نویسندگان

  • H C Tsien
  • B L Dreyfus
  • E L Schmidt
چکیده

Morphogenesis of stem nodules in Sesbania rostrata was studied over a period of 6 days after inoculation with an appropriate species of Rhizobium. Nodulation sites were initially slightly raised, circular areas 0.3 to 0.6 mm in diameter and 4 to 5 mm apart in vertical rows along the length of the stem. Each site was underlaid by an adventitious root primordium. A site became susceptible to infection by a specific Rhizobium sp. when the root primordium broke through the epidermis, leaving a fissure. Rhizobia multiplied within this fissure and colonized the exposed intercellular spaces. The infection extended inward as narrow, branched intercellular threads moved into a cortical meristematic zone, where cell division was initiated, and invagination of infection thread branches into adjacent plant cells followed. Rhizobia were released into the plant cells and surrounded immediately by plant membrane. Intracellular rhizobia divided actively, leading to bacteroid-filled cells. Infected areas enlarged and coalesced as the nodule matured.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Root Nodulation of Sesbania rostrata IBRAHIMA NDOYE , ' t FRAN ( OISE

The tropical legume Sesbania rostrata can be nodulated by Azorhizobium caulinodans on both its stem and its root system. Here we investigate in detail the process of root nodulation and show that nodules develop exclusively at the base of secondary roots. Intercellular infection leads to the formation of infection pockets, which then give rise to infection threads. Concomitantly with infection,...

متن کامل

Rhizobial factors required for stem nodule maturation and maintenance in Sesbania rostrata-Azorhizobium caulinodans ORS571 symbiosis.

The molecular and physiological mechanisms behind the maturation and maintenance of N(2)-fixing nodules during development of symbiosis between rhizobia and legumes still remain unclear, although the early events of symbiosis are relatively well understood. Azorhizobium caulinodans ORS571 is a microsymbiont of the tropical legume Sesbania rostrata, forming N(2)-fixing nodules not only on the ro...

متن کامل

A Chemotaxis Receptor Modulates Nodulation during the Azorhizobium caulinodans-Sesbania rostrata Symbiosis.

UNLABELLED Azorhizobium caulinodans ORS571 is a free-living nitrogen-fixing bacterium which can induce nitrogen-fixing nodules both on the root and the stem of its legume host Sesbania rostrata This bacterium, which is an obligate aerobe that moves by means of a polar flagellum, possesses a single chemotaxis signal transduction pathway. The objective of this work was to examine the role that ch...

متن کامل

Free-living Rhizobium strain able to grow on n(2) as the sole nitrogen source.

A Rhizobium strain isolated from stem nodules of the legume Sesbania rostrata was shown to grow on atmospheric nitrogen (N(2)) as the sole nitrogen source. Non-N(2)-fixing mutants isolated directly on agar plates formed nodules that did not fix N(2) when inoculated into the host plant.

متن کامل

Lon protease of Azorhizobium caulinodans ORS571 is required for suppression of reb gene expression.

Bacterial Lon proteases play important roles in a variety of biological processes in addition to housekeeping functions. In this study, we focused on the Lon protease of Azorhizobium caulinodans, which can fix nitrogen both during free-living growth and in stem nodules of the legume Sesbania rostrata. The nitrogen fixation activity of an A. caulinodans lon mutant in the free-living state was no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 156 2  شماره 

صفحات  -

تاریخ انتشار 1983