S-(1,2,2-trichlorovinyl)-L-cysteine sulfoxide, a reactive metabolite of S-(1,2,2-Trichlorovinyl)-L-cysteine formed in rat liver and kidney microsomes, is a potent nephrotoxicant.
نویسندگان
چکیده
Previously, we have provided evidence that cytochromes P450 (P450s) and flavin-containing monooxygenases (FMOs) are involved in the oxidation of S-(1,2,2-trichlorovinyl)-L-cysteine (TCVC) in rabbit liver microsomes to yield the reactive metabolite TCVC sulfoxide (TCVCS). Because TCVC is a known nephrotoxic metabolite of tetrachloroethylene, the nephrotoxic potential of TCVCS in rats and TCVCS formation in rat liver and kidney microsomes were investigated. At 5 mM TCVC, rat liver microsomes formed TCVCS at a rate nearly 5 times higher than the rate measured with rat kidney microsomes, whereas at 1 mM TCVC only the liver activity was detectable. TCVCS formation in liver and kidney microsomes was dependent upon the presence of NADPH and was inhibited by the addition of methimazole or 1-benzylimidazole, but not superoxide dismutase, catalase, KCN, or deferoxamine, consistent with the involvement of both FMOs and P450s. Rats given TCVCS at 230 micromol/kg i.p. exhibited acute tubular necrosis at 2 and 24 h after treatment, and they had elevated blood urea nitrogen levels at 24 h, whereas TCVC was a much less potent nephrotoxicant than TCVCS. Furthermore, pretreatment with aminooxyacetic acid enhanced TCVC toxicity. In addition, reduced nonprotein thiol concentrations in the kidney were decreased by nearly 50% 2 h after TCVCS treatment compared with saline-treated rats, whereas the equimolar dose of TCVC had no effect on kidney nonprotein thiol status. No significant lesions or changes in nonprotein thiol status were observed in liver with either TCVC or TCVCS. Collectively, the results suggest that TCVCS may play a role in TCVC-induced nephrotoxicity.
منابع مشابه
A mechanism of haloalkene-induced renal carcinogenesis.
Several halogenated alkenes are nephrotoxic; some others induce renal tubular adenocarcinomas in rodents after lifelong administration. A bioactivation mechanism accounting for the organ-selective tumor induction has been elucidated: conjugation of the parent compounds with glutathione (GSH), catalyzed by hepatic GSH S-transferases, results in the formation of haloalkyl and halovinyl glutathion...
متن کاملProtective Effects of Verapamil Against Hexachlorobutadiene Nephrotoxicity in Rat
Background: Hexachlorobutadiene (HCBD), a potent nephrotoxin can cause degeneration and necrosis in renal tubular epithelial cells in rodents. Its toxicity is due to conjugation with glutathione to form the related cysteine conjugate. This metabolite is then taken up by the kidney and cleared through renal tubular epithelial cells as a reactive thiol derivative by the enzyme β-lyase. Objective:...
متن کاملDmd063230 749..755
The metabolism, excretion, and pharmacokinetics of S-allyl-L-cysteine (SAC), an active key component of garlic supplements, were examined in rats and dogs. A single dose of SAC was administered orally or i.v. to rats (5 mg/kg) and dogs (2 mg/kg). SAC was well absorbed (bioavailability >90%) and its four metabolites—N-acetylS-allyl-L-cysteine (NAc-SAC), N-acetyl-S-allyl-L-cysteine sulfoxide (NAc...
متن کاملSulfoxides as urinary metabolites of S-allyl-L-cysteine in rats: evidence for the involvement of flavin-containing monooxygenases.
S-Allyl-L-cysteine (SAC), a component of garlic and a metabolite of allyl halides, is a known substrate for multiple flavin-containing monooxygenases (FMOs). In the current study, we characterize the in vivo SAC metabolism by investigating the presence of SAC, N-acetyl-S-allyl-L-cysteine (NASAC), and their corresponding sulfoxides in the urine of rats given SAC (200 or 400 mg/kg i.p.). In some ...
متن کاملHuman kidney flavin-containing monooxygenases and their potential roles in cysteine s-conjugate metabolism and nephrotoxicity.
The potential roles of human hepatic and renal flavin-containing monooxygenases (FMOs) in the metabolism of the cysteine S-conjugates S-allyl cysteine (SAC) and S-(1,2-dichlorovinyl)-L-cysteine (DCVC) were investigated. Incubations of human cDNA-expressed FMO1, FMO3, FMO4, and FMO5 with SAC resulted in detection of SAC sulfoxide, with FMO3 exhibiting approximately 3-, 4-, and 10-fold higher act...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 321 3 شماره
صفحات -
تاریخ انتشار 2007