Research on a hybrid map matching algorithm for Global Navigation Satellite System based train positioning

نویسندگان

  • J. Liu
  • B. Cai
  • T. Tang
  • J. Wang
  • Wei ShangGuan
چکیده

GNSS has been proved to have great potential for Safety-of-Life critical rail applications, particularly the train control technique and railway signalling. In the GNSS based train positioning scheme, although with the aid of inertial sensors (e.g. the odometer, gyro, accelerator and Doppler radar) some systematic and random errors could be reduced or limited by an appropriate measuring method and data fusion filtering, it is significant to improve and guarantee the positioning precision and integrity performance by using the map matching (MM) technique in a cost effective way. In this paper, the structure of an electrical track map database is designed according to the requirements of precision and efficiency, the architecture of a GNSS based train positioning system integrating INS sensors is introduced, and a novel hybrid map matching algorithm is proposed, in which the determined train position is the integration of the position solution from multi-sensor fusion, the identification of the similarity or matching probability, and heading validation, with different track map levels. As the “point-to-curve” and “point-to-point” matching strategy are adopted with the provided feature of track map data, the adaptive performance and completeness of the map matching algorithm is guaranteed and improved. A field test in the Qinghai-Tibet line demonstrates that the proposed algorithm earns high position decision accuracy and integrity with simple implementation, which is of great practical value to precise train control and railway signalling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Definition of an Enhanced Map-Matching Algorithm for Urban Environments with Poor GNSS Signal Quality

Vehicle positioning is a key factor for numerous information and assistance applications that are included in vehicles and for which satellite positioning is mainly used. However, this positioning process can result in errors and lead to measurement uncertainties. These errors come mainly from two sources: errors and simplifications of digital maps and errors in locating the vehicle. From that ...

متن کامل

Efficient Aerial Image Matching Algorithm for Autonomous Navigation of Aerial Vehicle

Guidance of aerial systems is generally based upon inertial navigation sensors and Global Positioning System. Inertial navigation sensors are assumed accurate and reliable for short duration of flights. Error of inertial navigation sensors accumulates and ultimately drifts from actual position increases with flight duration. On the other hand, Global Positioning System (GPS) is independent of f...

متن کامل

Integration Scheme for SINS/GPS System Based on Vertical Channel Decomposition and In-Motion Alignment

Accurate alignment and vertical channel instability play an important role in the strap-down inertial navigation system (SINS), especially in the case that precise navigation has to be achieved over long periods of time. Due to poor initialization as well as the cumulative errors of low-cost inertial measurement units (IMUs), initial alignment is not sufficient to achieve required navigation ac...

متن کامل

Three Dimensional Fuzzy Logic Based-Map Matching Algorithm for Location Based Service Applications in Urban Canyons

A major portion of the Location-Based Services (LBS) market deals with applications involving in-car navigation systems. Many such LBS applications involve positioning in urban areas which contain high rise buildings. The Global Positioning System (GPS) is the most popular choice for navigating vehicles, primarily due to its autonomous positioning ability. Although GPS has good positioning accu...

متن کامل

INS/GPS/LiDAR Integrated Navigation System for Urban and Indoor Environments Using Hybrid Scan Matching Algorithm

This paper takes advantage of the complementary characteristics of Global Positioning System (GPS) and Light Detection and Ranging (LiDAR) to provide periodic corrections to Inertial Navigation System (INS) alternatively in different environmental conditions. In open sky, where GPS signals are available and LiDAR measurements are sparse, GPS is integrated with INS. Meanwhile, in confined outdoo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010