Electrolyte Leakage, Lipoxygenase, and Lipid Peroxidation Induced in Tomato Leaf Tissue by Specific and Nonspecific Elicitors from Cladosporium fulvum.
نویسندگان
چکیده
Glycoprotein nonspecific elicitor (NSE) and a specific elicitor preparation from intercellular fluids (SE) of tomato (Lycopersicon esculentum Mill. cv Bonny Best or Potentate) infected with race 2.4.5 of Cladosporium fulvum Cooke [syn. Fulvia fulva (Cooke) Ciferri] were injected into cv Sonatine (resistant to race 2.4.5) to compare electrolyte leakage, lipoxygenase activity, and lipid peroxidation induced in response to these elicitors. Increased electrolyte leakage was induced by NSE or SE; the leakage due to NSE but not to SE was inhibited by the nonsteroidal antiinflammatory drug (NSAID) piroxicam. Under normal photoperiod conditions, higher levels of lipoxygenase activity were detected 6 hours after injection with either elicitor. This activity peaked by 12 hours with both elicitors and declined to control levels by 24 hours when visible necrosis could be detected. Both NSE and SE-induced lipoxygenase was inhibited by piroxicam in vitro. Lipid peroxidation in elicitor-treated tissue was also assayed at 6, 12, and 24 hours after injection using the TBA test for malonaldehyde. Increased peroxidation was detected in response to NSE or SE at 12 hours with similar values obtained at 24 hours. With plants incubated in the dark, lipoxygenase, and lipid peroxidation were similarly induced in SE-injected tissue whereas necrosis induction by SE was light dependent.
منابع مشابه
Race-specific elicitors of Cladosporium fulvum promote translocation of cytosolic components of NADPH oxidase to the plasma membrane of tomato cells.
The effect of race-specific elicitors on NADPH oxidase was examined in vivo by treating tomato cells with elicitor-containing intercellular fluids prepared from infected tomato leaves inoculated with specific Cladosporium fulvum races. Treatment of Cf-4 or Cf-5 cells with intercellular fluids from incompatible but not from compatible races of C. fulvum increased oxidase activity and the amount ...
متن کاملPlant Defense Response to Fungal Pathogens (II. G-Protein-Mediated Changes in Host Plasma Membrane Redox Reactions).
Elicitor preparations containing the avr5 gene products from races 4 and 2.3 of Cladosporium fulvum, and tomato (Lycopersicon esculentum L.) cells containing the resistance gene Cf5 were used to investigate the involvement of redox processes in the production of active oxygen species associated with the plant response to the fungal elicitors. Here we demonstrate that certain race-specific elici...
متن کاملSpecific Hypersensitive Response-Associated Recognition of New Apoplastic Effectors from Cladosporium fulvum in Wild Tomato.
Tomato leaf mold disease is caused by the biotrophic fungus Cladosporium fulvum. During infection, C. fulvum produces extracellular small secreted protein (SSP) effectors that function to promote colonization of the leaf apoplast. Resistance to the disease is governed by Cf immune receptor genes that encode receptor-like proteins (RLPs). These RLPs recognize specific SSP effectors to initiate a...
متن کاملThe Persimmon 9-lipoxygenase Gene DkLOX3 Plays Positive Roles in Both Promoting Senescence and Enhancing Tolerance to Abiotic Stress
The lipoxygenase (LOX) pathway is a key regulator for lipid peroxidation, which is crucial for plant senescence and defense pathways. In this study, the transcriptional expression patterns of three persimmon (Diospyros kaki L. 'Fupingjianshi') 9-lipoxygenase genes (DkLOX1, DkLOX3, and DkLOX4) were investigated. DkLOX1 was specifically expressed in fruit, particularly in young fruit, and showed ...
متن کاملThe biotrophic fungus Cladosporium fulvum circumvents Cf-4-mediated resistance by producing unstable AVR4 elicitors.
The avirulence gene Avr4 conditions avirulence of the biotrophic fungus Cladosporium fulvum on tomato genotypes carrying resistance gene Cf-4 (MM-Cf4). Strains of the fungus that circumvent Cf-4-specific resistance show various single point mutations in the coding region of the Avr4 gene. Similar to expression of the Avr4 gene, expression of the various virulent avr4 alleles is specifically ind...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 90 3 شماره
صفحات -
تاریخ انتشار 1989