Modified Wave Operators for Maxwell-Schrödinger Equations in Three Space Dimensions

نویسنده

  • Akihiro Shimomura
چکیده

We study the scattering theory for the coupled Maxwell-Schrödinger equation under the Coulomb gauge condition in three space dimensions. This equation belongs to the borderline between the short range case and the long range one. We construct modified wave operators for that equation for small scattered states with no restriction on the support of the Fourier transform of them.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simple Non Linear Klein-Gordon Equations in 2 space dimensions, with long range scattering

We establish that solutions, to the most simple NLKG equations in 2 space dimensions with mass resonance, exhibits long range scattering phenomena. Modified wave operators and solutions are constructed for these equations. We also show that the modified wave operators can be chosen such that they linearize the non-linear representation of the Poincaré group defined by the NLKG.

متن کامل

Scattering Theory for the Coupled Klein-gordon-schrödinger Equations in Two Space Dimensions Ii

We study the scattering theory for the coupled KleinGordon-Schrödinger equation with the Yukawa type interaction in two space dimensions. The scattering problem for this equation belongs to the borderline between the short range case and the long range one. We show the existence of the wave operators to this equation without any size restriction on the Klein-Gordon component of the final state ...

متن کامل

Scattering Theory for the Coupled Klein-gordon-schrödinger Equations in Two Space Dimensions

We study the scattering theory for the coupled KleinGordon-Schrödinger equation with the Yukawa type interaction in two space dimensions. The scattering problem for this equation belongs to the borderline between the short range case and the long range one. We show the existence of the wave operators to this equation without any size restriction on the Klein-Gordon component of the final state.

متن کامل

Wave Operators for the Coupled Klein-Gordon-Schrödinger Equations in Two Space Dimensions

In this paper, we study the scattering theory for the coupled KleinGordon-Schrödinger equation (the KGS equation) with the Yukawa type interaction, which is the certain quadratic interaction, in two space dimensions. It is well-known that for the two dimensional decoupled nonlinear Schrödinger and Klein-Gordon equations with the typical nonlinearity of the form |u|p−1u, there exist wave operato...

متن کامل

Solving infinite system of nonlinear integral equations by using ‎F-‎generalized Meir-Keeler condensing operators, measure of noncompactness and modified homotopy perturbation.

In this article to prove existence of solution of infinite system of nonlinear integral equations, we consider the space of solution containing all convergence sequences with a finite limit, as with a suitable norm is a Banach space. By creating a generalization of Meir-Keeler condensing operators which is named as F-generalized Meir-Keeler condensing operators and measure of noncompactness, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002