Propagation of travelling waves in sub - excitable systems driven by noise and periodic forcing

نویسندگان

  • Quan-Xing Liu
  • Jin-Zhong Zhang
چکیده

It has been reported that traveling waves propagate periodically and stably in sub-excitable systems driven by noise [Phys. Rev. Lett. 88, 138301 (2002)]. As a further investigation, here we observe different types of traveling waves under different noises and periodic forces, using a simplified Oregonator model. Depending on different noises and periodic forces, we have observed different types of wave propagation (or their disappearance). Moreover, the reversal phenomena are observed in this system based on the numerical experiments in the one-dimensional space. As an explanation, we regard it as the effect of periodic forces. Thus, we give qualitative explanations to how reversal phenomena stably appear, which seem to arise from the mixing function of the periodic force and the noise. And the output period and three velocities (the normal, the positive and the negative) of the travelling waves are defined and their relationship with the periodic forces, along with the types of waves, are also studied in sub-excitable system under a fixed noise intensity. PACS. 82.40.Ck Pattern formation in reactions with diffusion, flow and heat transfer – 05.40.Ca Noise – 47.54.-r Pattern selection – 83.60.Np Effects of electric and magnetic fields

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pacemaker-guided noise-induced spatial periodicity in excitable media

We study the impact of subthreshold periodic pacemaker activity and internal noise on the spatial dynamics of excitable media. For this purpose, we examine two systems that both consist of diffusively coupled units. In the first case, the local dynamics of the units is driven by a simple one-dimensional model of excitability with a piece-wise linear potential. In the second case, a more realist...

متن کامل

Singular limit and homogenization for flame propagation in periodic excitable media

This paper is concerned with a class of singular equations modeling the combustion of premixed gas in periodic media. The model involves two parameters: the period of the medium |L| and a singular parameter ε related to the activation energy. The existence of pulsating travelling fronts for fixed ε and |L| was proved by H. Berestycki and F. Hamel in [BH]. In the present paper, we investigate th...

متن کامل

Persistency of noise-induced spatial periodicity in excitable media

– We study effects of spatiotemporal additive noise in conjunction with subthreshold travelling waves on the spatial dynamics of excitable media. We show that solely additive noise is able to extract an inherent spatial periodicity of the media in a resonant manner, thus marking the existence of spatial coherence resonance in the studied system. Next, in addition to noise, we introduce to the m...

متن کامل

Entrainment of marginally stable excitation waves by spatially extended sub-threshold periodic forcing

We introduce a novel approach of stabilizing the dynamics of excitation waves by spatially extended sub-threshold periodic forcing. Entrainment of unstable primary waves has been studied numerically for different amplitudes and frequencies of additional sub-threshold stimuli. We determined entrainment regimes under which excitation blocks were transformed into consistent 1:1 responses. These re...

متن کامل

Periodic travelling waves in the theta model for synaptically connected neurons

We study periodic travelling waves in the Theta model for a linear continuum of synaptically-interacting neurons. We prove that when the neurons are oscillatory, at least one periodic travelling of every wave number always exists. In the case of excitable neurons, we prove that no periodic travelling waves exist when the synaptic coupling is weak, and at least two periodic travelling waves of e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008