Phase response curves of subthalamic neurons measured with synaptic input and current injection.

نویسندگان

  • Michael A Farries
  • Charles J Wilson
چکیده

Infinitesimal phase response curves (iPRCs) provide a simple description of the response of repetitively firing neurons and may be used to predict responses to any pattern of synaptic input. Their simplicity makes them useful for understanding the dynamics of neurons when certain conditions are met. For example, the sizes of evoked phase shifts should scale linearly with stimulus strength, and the form of the iPRC should remain relatively constant as firing rate varies. We measured the PRCs of rat subthalamic neurons in brain slices using corticosubthalamic excitatory postsynaptic potentials (EPSPs; mediated by both AMPA- and NMDA-type receptors) and injected current pulses and used them to calculate the iPRC. These were relatively insensitive to both the size of the stimulus and the cell's firing rate, suggesting that the iPRC can predict the response of subthalamic nucleus cells to extrinsic inputs. However, the iPRC calculated using EPSPs differed from that obtained using current pulses. EPSPs (normalized for charge) were much more effective at altering the phase of subthalamic neurons than current pulses. The difference was not attributable to the extended time course of NMDA receptor-mediated currents, being unaffected by blockade of NMDA receptors. The iPRC provides a good description of subthalamic neurons' response to input, but iPRCs are best estimated using synaptic inputs rather than somatic current injection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase Response Curves of Subthalamic Neurons Measured 1 with Synaptic Input and Current Injection 2 3 4 Running Head : Phase Response Curves

1 with Synaptic Input and Current Injection 2 3 4 Running Head: Phase Response Curves in the Subthalamic Nucleus 5 6 Michael A. Farries and Charles J. Wilson 7 8 Department of Biology, University of Texas San Antonio, San Antonio, TX 9 10 11 12 Corresponding Author: 13 Michael A. Farries 14 Department of Biology, University of Texas San Antonio 15 One UTSA Circle 16 San Antonio, TX 78249 17 mic...

متن کامل

Biophysical basis of the phase response curve of subthalamic neurons with generalization to other cell types.

Experimental evidence indicates that the response of subthalamic neurons to excitatory postsynaptic potentials (EPSPs) is well described by their infinitesimal phase response curves (iPRC). However, the factors controlling the shape of that iPRC, and hence controlling the way subthalamic neurons respond to synaptic input, are unclear. We developed a biophysical model of subthalamic neurons to a...

متن کامل

Activation of inwardly-rectifying k+ channels in hypothalamic POMC neurons: role in integrating synaptic and metabolic input

Hypothalamic proopiomelanocortin (POMC) neurons are critical for controlling homeostatic functions in mammals. We used a transgenic mouse model in which the POMC neurons were labeled with enhanced-green fluorescent protein (EGFP) to perform visualized, whole-cell patch recordings from pre-pubertal female hypothalamic slices. The mouse POMC-EGFP neurons expressed the same endogenous conductance ...

متن کامل

Mechanisms underlying spontaneous oscillation and rhythmic firing in rat subthalamic neurons.

Subthalamic neurons drive basal ganglia output neurons in resting animals and relay cortical and thalamic activity to the same output neurons during movement. The first objective of this study was to determine the mechanisms underlying the spontaneous activity of subthalamic neurons in vitro and to gain insight into their resting discharge in vivo. The second objective was to determine the resp...

متن کامل

Activation of inwardly-rectifying k+ channels in hypothalamic POMC neurons: role in integrating synaptic and metabolic input

Hypothalamic proopiomelanocortin (POMC) neurons are critical for controlling homeostatic functions in mammals. We used a transgenic mouse model in which the POMC neurons were labeled with enhanced-green fluorescent protein (EGFP) to perform visualized, whole-cell patch recordings from pre-pubertal female hypothalamic slices. The mouse POMC-EGFP neurons expressed the same endogenous conductance ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 108 7  شماره 

صفحات  -

تاریخ انتشار 2012