Localized Multiple Kernel Learning - A Convex Approach
نویسندگان
چکیده
We propose a localized approach to multiple kernel learning that can be formulated as a convex optimization problem over a given cluster structure. For which we obtain generalization error guarantees and derive an optimization algorithm based on the Fenchel dual representation. Experiments on real-world datasets from the application domains of computational biology and computer vision show that convex localized multiple kernel learning can achieve higher prediction accuracies than its global and non-convex local counterparts.
منابع مشابه
Theory for the Localized Setting of Learning Kernels
We analyze the localized setting of learning kernels also known as localized multiple kernel learning. This problem has been addressed in the past using rather heuristic approaches based on approximately optimizing non-convex problem formulations, of which up to now no theoretical learning bounds are known. In this paper, we show generalization error bounds for learning localized kernel classes...
متن کاملTheory and Algorithms for the Localized Setting of Learning Kernels
We analyze the localized setting of learning kernels also known as localized multiple kernel learning. This problem has been addressed in the past using rather heuristic approaches based on approximately optimizing non-convex problem formulations, of which up to now no theoretical learning bounds are known. In this paper, we show generalization error bounds for learning localized kernel classes...
متن کاملMODELING OF FLOW NUMBER OF ASPHALT MIXTURES USING A MULTI–KERNEL BASED SUPPORT VECTOR MACHINE APPROACH
Flow number of asphalt–aggregate mixtures as an explanatory factor has been proposed in order to assess the rutting potential of asphalt mixtures. This study proposes a multiple–kernel based support vector machine (MK–SVM) approach for modeling of flow number of asphalt mixtures. The MK–SVM approach consists of weighted least squares–support vector machine (WLS–SVM) integrating two kernel funct...
متن کاملMultiple Kernel Machines Using Localized Kernels
Multiple kernel learning (Mkl) uses a convex combination of kernels where the weight of each kernel is optimized during training. However, Mkl assigns the same weight to a kernel over the whole input space. Localized multiple kernel learning (Lmkl) framework extends the Mkl framework to allow combining kernels with different weights in different regions of the input space by using a gating mode...
متن کاملEmpirical Optimal Kernel for Convex Multiple Kernel Learning
Multiple kernel learning (MKL) aims at learning a combination of different kernels, instead of using a single fixed kernel, in order to better match the underlying problem. In this paper, we propose the Empirical Optimal Kernel for convex combination MKL. The Empirical Optimal Kernel is based on the theory of kernel polarization, and is the one with the best generalization ability which can be ...
متن کامل