A class of asymptotic-preserving schemes for the Fokker-Planck-Landau equation
نویسندگان
چکیده
We present a class of asymptotic-preserving (AP) schemes for the nonhomogeneous Fokker–Planck–Landau (nFPL) equation. Filbet and Jin [16] designed a class of AP schemes for the classical Boltzmann equation, by penalization with the BGK operator, so they become efficient in the fluid dynamic regime. We generalize their idea to the nFPL equation, with a different penalization operator, the Fokker–Planck operator that can be inverted by the conjugate-gradient method. We compare the effects of different penalization operators, and conclude that the Fokker–Planck (FP) operator is a good choice. Such schemes overcome the stiffness of the collision operator in the fluid regime, and can capture the fluid dynamic limit without numerically resolving the small Knudsen number. Numerical experiments demonstrate that the schemes possess the AP property for general initial data, with numerical accuracy uniformly in the Knudsen number. Published by Elsevier Inc.
منابع مشابه
The completely conservative di erence schemes for the nonlinear Landau – Fokker – Planck equation
Conservativity and complete conservativity of nite di erence schemes are considered in connection with the nonlinear kinetic Landau–Fokker–Planck equation. The characteristic feature of this equation is the presence of several conservation laws. Finite di erence schemes, preserving density and energy are constructed for the equation in oneand two-dimensional velocity spaces. Some general method...
متن کاملAsymptotic-preserving schemes for kinetic-fluid modeling of disperse two-phase flows
We consider a system coupling the incompressible Navier–Stokes equations to the Vlasov– Fokker–Planck equation. Such a problem arises in the description of particulate flows. We design a numerical scheme to simulate the behavior of the system. This scheme is asymptotic-preserving, thus efficient in both the kinetic and hydrodynamic regimes. It has a numerical stability condition controlled by t...
متن کاملPseudo-spectral Matrix and Normalized Grunwald Approximation for Numerical Solution of Time Fractional Fokker-Planck Equation
This paper presents a new numerical method to solve time fractional Fokker-Planck equation. The space dimension is discretized to the Gauss-Lobatto points, then we apply pseudo-spectral successive integration matrix for this dimension. This approach shows that with less number of points, we can approximate the solution with more accuracy. The numerical results of the examples are displayed.
متن کاملNumerical Studies and Simulation of the Lower Hybrid Waves Current Drive by using Fokker – Planck Equation in NSST and HT-7 Tokamaks
Recent experiments on the spherical tokamak have discovered the conditions to create a powerful plasma and ensure easy shaping and amplification of stability, high bootstrap current and confinement energy. The spherical tours (ST) fusion energy development path is complementary to the tokamak burning plasma experiment such as NSTX and higher toroidal beta regimes and improves the design of a po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 230 شماره
صفحات -
تاریخ انتشار 2011