PKR acts early in infection to suppress Semliki Forest virus production and strongly enhances the type I interferon response

نویسندگان

  • Gerald Barry
  • Lucy Breakwell
  • Rennos Fragkoudis
  • Ghassem Attarzadeh-Yazdi
  • Julio Rodriguez-Andres
  • Alain Kohl
  • John K. Fazakerley
چکیده

The double-stranded RNA-activated protein kinase (PKR) is a key regulator of protein translation, interferon (IFN) expression and cell survival. Upon infection of vertebrate cells in continuous culture, the alphavirus Semliki Forest virus (SFV) initiates apoptosis and IFN synthesis. To determine the effect of PKR on SFV infection, we studied the course of infection in wild-type (wt) mice, mice with a genetic deletion of PKR (PKR-/-) and mouse embryo fibroblasts (MEFs) derived from these mice. In MEFs, PKR delayed virus protein synthesis, production of infectious virus and caspase-3-activated cell death and reduced the yield of infectious virus by 90%. Small interfering RNA suppression of PKR levels in NIH-3T3 cells also reduced virus production and apoptosis. In MEFs, PKR was not required for initiation of IFN-beta gene transcription, but contributed strongly to the magnitude of this response. Levels of IFN-beta transcripts in PKR-/- MEFs at 8 h were 80% lower than those in wt MEFs and levels of functional IFN at 24 h were 95% lower. Following infection of wt and PKR-/- mice, SFV4 and SFV A7(74) were avirulent. PKR increased levels of serum IFN and the rate of clearance of infectious virus from the brain. In summary, in response to SFV, PKR exerts an early antiviral effect that delays virus protein production and release of infectious virus and, whilst PKR is not required for induction of apoptosis or activation of the type I IFN response, it strongly augments the type I IFN response and contributes to clearance of infectious virus from the mouse brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semliki Forest virus capsid protein inhibits the initiation of translation by upregulating the double-stranded RNA-activated protein kinase (PKR).

We investigated the possible translational role which elevated concentrations of highly purified Semliki Forest virus (SFV) capsid (C)-protein molecules may play in a cell-free translation system. Here we demonstrate that in the absence of double-stranded RNA high concentrations of C protein triggered the phosphorylation of the interferon-induced, double-stranded RNA-activated protein kinase, P...

متن کامل

Inhibition of the type I interferon response in human dendritic cells by dengue virus infection requires a catalytically active NS2B3 complex.

Dengue virus (DENV) is the most prevalent arthropod-borne human virus, able to infect and replicate in human dendritic cells (DCs), inducing their activation and the production of proinflammatory cytokines. However, DENV can successfully evade the immune response in order to produce disease in humans. Several mechanisms of immune evasion have been suggested for DENV, most of them involving inte...

متن کامل

Hepatitis C Virus Reveals a Novel Early Control in Acute Immune Response

Recognition of viral RNA structures by the intracytosolic RNA helicase RIG-I triggers induction of innate immunity. Efficient induction requires RIG-I ubiquitination by the E3 ligase TRIM25, its interaction with the mitochondria-bound MAVS protein, recruitment of TRAF3, IRF3- and NF-κB-kinases and transcription of Interferon (IFN). In addition, IRF3 alone induces some of the Interferon-Stimulat...

متن کامل

Semliki Forest virus nonstructural protein 2 is involved in suppression of the type I interferon response.

The type I interferons (IFNs) are potent mediators of antiviral immunity, and many viruses have developed means to block their expression or their effects. Semliki Forest virus (SFV) infection induces rapid and profound silencing of host cell gene expression, a process believed to be important for the inhibition of the IFN response. In SFV-infected cells, a large proportion of the nonstructural...

متن کامل

Alpha interferon restricts human T-lymphotropic virus type 1 and 2 de novo infection through PKR activation.

Type I interferon (IFN-I) inhibits the replication of different viruses. However, the effect of IFN-I on the human T-lymphotropic virus type 1 (HTLV-1) viral cycle is controversial. Here, we investigated the consequences of IFN-α addition for different steps of HTLV-1 and HTLV-2 infection. We first show that alpha interferon (IFN-α) efficiently impairs HTLV-1 and HTLV-2 de novo infection in a T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 90  شماره 

صفحات  -

تاریخ انتشار 2009