Quantifying the three main components of salinity tolerance in cereals.
نویسندگان
چکیده
Salinity stress is a major factor inhibiting cereal yield throughout the world. Tolerance to salinity stress can be considered to contain three main components: Na(+) exclusion, tolerance to Na(+) in the tissues and osmotic tolerance. To date, most experimental work on salinity tolerance in cereals has focused on Na(+) exclusion due in part to its ease of measurement. It has become apparent, however, that Na(+) exclusion is not the sole mechanism for salinity tolerance in cereals, and research needs to expand to study osmotic tolerance and tissue tolerance. Here, we develop assays for high throughput quantification of Na(+) exclusion, Na(+) tissue tolerance and osmotic tolerance in 12 Triticum monococcum accessions, mainly using commercially available image capture and analysis equipment. We show that different lines use different combinations of the three tolerance mechanisms to increase their total salinity tolerance, with a positive correlation observed between a plant's total salinity tolerance and the sum of its proficiency in Na(+) exclusion, osmotic tolerance and tissue tolerance. The assays developed in this study can be easily adapted for other cereals and used in high throughput, forward genetic experiments to elucidate the molecular basis of these components of salinity tolerance.
منابع مشابه
Relative salt tolerance of south Khorasan millets
Abstract Millets are important agricultural crops for arid regions due to short life span and their resistance to salinity and drought conditions. In Iran, three main species of millets including proso millet (Panicum miliaceum), foxtail millet (Setaria italica) and pearl millet (Pennisetum glaucum) are cultivated in Shouthern Khorasan province, eastern Iran. In order to assess inter-specific...
متن کاملEvaluation of salinity tolerance in rice genotypes
Salinity is considered as one of important physical factors influencing rice (Oryza sativa L.) production. Knowledge of salinity effects on rice seedling growth and yieldcomponents would improve management practices in fields andincrease our understanding of salt tolerance mechanisms in rice. This study was designed to assess the role of Saltol QTL in regards to effects of salinity on plant gro...
متن کاملTriple Test Cross Analysis for Genetic Components of Salinity Tolerance in Spring Wheat
Soil salinity poses considerable and increasing problems for agriculture, and is receiving much attention from plant breeders. The identification of genes whose expression enables plants to adapt to and/or tolerate salt stress is essential for breeding programs, but little is known about the genetic mechanisms of traits in saline conditions. The data obtained from 75 families produced by crossi...
متن کاملThe Effect of Zinc Nutrition on Two Olive (Olea europaea L.) Cultivars Components and Alleviate Oxidative Damage in Salinity Conditions
The role of zinc (Zn) in enhancing defense capacity of several plants against salinity has been demonstrated but there is limited information on the impact of Zn nutrition on alleviating salinity-induced oxidative damage in olive. One-year-old seedlings of two varieties of olive (Olea europaea L. cvs. Frontoio and Conservolea) supplied with three Zn levels (0, 1 and 5 mM in the form of ZnSO4.7H...
متن کاملHydrogen Peroxide-Induced Root Ca2+ and K+ Fluxes Correlate with Salt Tolerance in Cereals: Towards the Cell-Based Phenotyping
Salinity stress-induced production of reactive oxygen species (ROS) and associated oxidative damage is one of the major factors limiting crop production in saline soils. However, the causal link between ROS production and stress tolerance is not as straightforward as one may expect, as ROS may also play an important signaling role in plant adaptive responses. In this study, the causal relations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant, cell & environment
دوره 32 3 شماره
صفحات -
تاریخ انتشار 2009