A Generalization of Tight Closure and Multiplier Ideals

نویسندگان

  • NOBUO HARA
  • KEN-ICHI YOSHIDA
چکیده

We introduce a new variant of tight closure associated to any fixed ideal a, which we call a-tight closure, and study various properties thereof. In our theory, the annihilator ideal τ(a) of all a-tight closure relations, which is a generalization of the test ideal in the usual tight closure theory, plays a particularly important role. We prove the correspondence of the ideal τ(a) and the multiplier ideal associated to a (or, the adjoint of a in Lipman’s sense) in normal Q-Gorenstein rings reduced from characteristic zero to characteristic p 0. Also, in fixed prime characteristic, we establish some properties of τ(a) similar to those of multiplier ideals (e.g., a Briançon-Skoda-type theorem, subadditivity, etc.) with considerably simple proofs, and study the relationship between the ideal τ(a) and the F-rationality of Rees algebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 7 Generalized Test Ideals and Symbolic Powers

Hochster and Huneke proved in [HH6] fine behaviors of symbolic powers of ideals in regular rings, using the theory of tight closure. In this paper, we use generalized test ideals, which are a characteristic p analogue of multiplier ideals, to give a slight generalization of Hochster-Huneke's results.

متن کامل

Generalized Test Ideals and Symbolic Powers

In [HH7], developing arguments in [HH5], Hochster and Huneke used classical tight closure techniques to prove a fine behavior of symbolic powers of ideals in regular rings. In this paper, we use generalized test ideals, which are a characteristic p analogue of multiplier ideals, to give a generalization of Hochster-Huneke's results.

متن کامل

Relative test elements for tight closure

Test ideals play a crucial role in the theory of tight closure developed by Melvin Hochster and Craig Huneke. Recently, Karen Smith showed that test ideals are closely related to certain multiplier ideals that arise in vanishing theorems in algebraic geometry. In this paper we develop a generalization of the notion of test ideals: for complete local rings R and S, where S is a module-6nite exte...

متن کامل

Strong Test Modules and Multiplier Ideals

We introduce the notion of strong test module and show that a large number of such modules appear in the tight closure theory of complete domains: the test ideal (this has already been known), the parameter test module, and the module of relative test elements. They also appear as certain multiplier ideals, a concept of interest in algebraic geometry.

متن کامل

Brief Guide to Some of the Literature on F-singularities

Many of the tools of higher dimensional complex birational algebraic geometry—including singularities of pairs, multiplier ideals, and log canonical thresholds— have ”characteristic p” analogs arising from ideas in tight closure theory. Tight closure, introduced by Hochster and Huneke in [17], is a closure operation performed on ideals in commutative rings of prime characteristic, and has an in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003