Interior Estimates for Ritz - Galerkin Methods

نویسندگان

  • Joachim A. Nitsche
  • Alfred H. Schatz
  • JOACHIM A. NITSCHE
  • ALFRED H. SCHATZ
چکیده

Interior a priori error estimates in Sobolev norms are derived from interior RitzGalerkin equations which are common to a class of methods used in approximating solutions of second order elliptic boundary value problems. The estimates are valid for a large class of piecewise polynomial subspaces used in practice, which are defined on both uniform and nonuniform meshes. It is shown that the error in an interior domain ÍÍ can be estimated with the best order of accuracy that is possible locally for the subspaces used plus the error in a weaker norm over a slightly larger domain which measures the effects from outside of the domain ii. Additional results are given in the case when the subspaces are defined on a uniform mesh. Applications to specific boundary value problems are given. 0. Introduction. There are presently many methods which are available for computing approximate solutions of elliptic boundary value problems which may be classified as Ritz-Galerkin type methods. Many of these methods differ from each other in some respects (for example, in how they treat the boundary conditions) but have much in common in that they have what may be called "interior Ritz-Galerkin equations" which are the same. Here we shall be concerned with finding interior estimates for the rate of convergence for such a class of methods which are consequences of these interior equations. Let us briefly describe, in a special case, the type of question we wish to consider. Let £2 be a bounded domain in R^ with boundary 9£2 and consider, for simplicity, the problem of finding an approximate solution of a boundary value problem (0.1) Am =/ in £2, (0.2) Au =g on 9£2, where A is some boundary operator. Suppose now that we are given a one-parameter family of finite-dimensional subspaces Sh (0 < A < 1) of an appropriate Hilbert space in which u lies and that, for each A, we have computed an approximate solution un GSh to u using some Ritz-Galerkin type method. Here we have in mind, for example, methods such as the "engineer's" finite element method [8], [22], the Aubin-BabusTca penalty method [2], [4], the methods of Nitsche [12], [13] or the Received October 15, 1973. AMS (MOS) subject classifications (1970). Primary 65N30, 65N15. Copyright © 1974, American Mathematical Society

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum - Norm Interior Estimates for Ritz - Galerkin Methods

In this paper we obtain, by simple means, interior maximum-norm estimates for a class of Ritz-Galerkin methods used for approximating solutions of second order elliptic boundary value problems in R . The estimates are proved when the approximating subspaces are any of a large class of piecewise polynomial subspaces which we assume here to be defined on a uniform mesh on the interior domain. Opt...

متن کامل

Harmonic Ritz Values and Their Reciprocals

One application of harmonic Ritz values is to approximate, with a projection method, the interior eigenvalues of a matrix A while avoiding the explicit use of the inverse A. In this context, harmonic Ritz values are commonly derived from a Petrov-Galerkin condition for the residual of a vector from the test space. In this paper, we investigate harmonic Ritz values from a slightly different pers...

متن کامل

The Ritz-Galerkin method for MHD Couette flow of non-Newtonian fluid

In this paper, the Ritz-Galerkin method in Bernstein polynomial basis is applied for solving the nonlinear problem of the magnetohydrodynamic (MHD) flow of third grade fluid between the two plates. The properties of the Bernstein  polynomials together with the Ritz-Galerkin method are used to reduce the solution of the MHD Couette flow of non-Newtonian fluid in a porous medium to the solution o...

متن کامل

Weighted Error Estimates of the Continuous Interior Penalty Method for Singularly Perturbed Problems

In this paper we analyze local properties of the Continuous Interior Penalty (CIP) Method for a model convection-dominated singularly perturbed convection-diffusion problem. We show weighted a priori error estimates, where the weight function exponentially decays outside the subdomain of interest. This result shows that locally, the CIP method is comparable to the Streamline Diffusion (SD) or t...

متن کامل

L2-Error Estimates of the Extrapolated Crank-Nicolson Discontinuous Galerkin Approximations for Nonlinear Sobolev Equations

We analyze discontinuous Galerkin methods with penalty terms, namely, symmetric interior penalty Galerkin methods, to solve nonlinear Sobolev equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal ∞ L2 error estimates of discontinuous Galerk...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010