Observational tests of hurricane intensity estimations using GPS radio occultations

نویسندگان

  • Zhengzhao Johnny Luo
  • Kerry Emanuel
  • Anthony J. Mannucci
  • Panagiotis Vergados
چکیده

This study presents a novel approach to estimating the intensity of hurricanes using temperature profiles from Global Positioning System radio occultation (GPSRO) measurements. Previous research has shown that the temperature difference between the ocean surface and the eyewall outflow region defines hurricanes’ thermodynamic efficiency, which is directly proportional to the storm’s intensity. Outflow temperatures in the eyewall region of 27 hurricanes in 2004–2011 were obtained from GPSRO observations. These observations, along with ocean surface temperatures from NASA Modern Era-Retrospective Analysis for Research and Applications, made it possible to estimate hurricane intensities using a simplified hurricane model. Our preliminary results are quantitatively consistent with best-track values from the National Hurricane Center within 9.4%. As a by-product of our study, we present for the first time GPSRO vertical temperature profiles in the vicinity of the eyewall region of hurricanes, which we compared with collocated temperature profiles from the European Centre for Medium-Range Weather Forecasts Reanalysis Interim (ERA-Interim). Some of the GPSRO data sets reveal a double tropopause in the vicinity of the eyewall—a characteristic that we do not see in ERA-Interim. We conclude that GPSRO observations can be of supplementary assistance in augmenting existing data sets used in hurricane intensity estimation. GPSROs’ cloud-penetrating capability and high vertical resolution can be useful in providing soundings in the area close to the eyewall region of hurricanes revealing detailed information about their thermal structure, potentially advancing our current knowledge of their dynamics, evolution, and physics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT-3 mission

[1] The Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC)/Formosa Satellite 3 (FORMOSAT-3) is a six-satellite radio occultation mission that was launched in mid-April, 2006. The close proximity of the COSMIC satellites provides a unique opportunity to estimate the precision of the radio occultation remote sensing technique from closely collocated occultations (<10 k...

متن کامل

Atmospheric Profiling in the Inter-Tropical Ocean Area Based on Neural Network Approach Using GPS Radio Occultations

In this study we have proposed a method based on neural networks to retrieve refractivity, temperature, pressure and humidity profiles by using FORMOSAT-3/COSMIC GPS radio occultation data. To overcome the constraint of an independent knowledge of one atmospheric parameter at each GPS occultation, we trained three neural networks with refractivity profiles as input computed from the geometrical...

متن کامل

Validation of Water Vapour Profiles from GPS Radio Occultations in the Arctic

The relevance of water vapour in atmospheric physics and climate research contrasts strongly with the availability of humidity data in the Arctic. The most extensive humidity data set is based on approx. 80 radiosonde stations north of 60°N, but suffers from two major problems: Sensor diversity and sensor limitations under Arctic conditions, on the one hand, and lacking radiosonde launch sites ...

متن کامل

Backpropagation Processing of GPS Radio Occultation Data

We provide an assessment of the backpropagation (BP) method for processing GPS radio occultations using simulations as well as recent data from CHAMP and SAC-C. It is found that BP gives improved retrievals over the standard Doppler technique, even when multipath ambiguities are not completely removed. In addition, by being an amplitude-weighted algorithm, BP is robust in the presence of receiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014