An Unsupervised Model of Orthographic Variation for Historical Document Transcription

نویسندگان

  • Dan Garrette
  • Hannah Alpert-Abrams
چکیده

Historical documents frequently exhibit extensive orthographic variation, including archaic spellings and obsolete shorthand. OCR tools typically seek to produce so-called diplomatic transcriptions that preserve these variants, but many end tasks require transcriptions with normalized orthography. In this paper, we present a novel joint transcription model that learns, unsupervised, a probabilistic mapping between modern orthography and that used in the document. Our system thus produces dual diplomatic and normalized transcriptions simultaneously, and achieves a 35% relative error reduction over a state-of-the-art OCR model on diplomatic transcription, and a 46% reduction on normalized transcription.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Code-Switching for Multilingual Historical Document Transcription

Transcribing documents from the printing press era, a challenge in its own right, is more complicated when documents interleave multiple languages—a common feature of 16th century texts. Additionally, many of these documents precede consistent orthographic conventions, making the task even harder. We extend the state-of-the-art historical OCR model of Berg-Kirkpatrick et al. (2013) to handle wo...

متن کامل

Automatic Compositor Attribution in the First Folio of Shakespeare

Compositor attribution, the clustering of pages in a historical printed document by the individual who set the type, is a bibliographic task that relies on analysis of orthographic variation and inspection of visual details of the printed page. In this paper, we introduce a novel unsupervised model that jointly describes the textual and visual features needed to distinguish compositors. Applied...

متن کامل

Unsupervised Analysis of Structured Human Artifacts

Unsupervised Analysis of Structured Human Artifacts by Taylor Berg-Kirkpatrick Doctor of Philosophy in Computer Science University of California, Berkeley Professor Dan Klein, Chair The presence of hidden structure in human data—including natural language but also sources like music, historical documents, and other complex artifacts—makes this data extremely difficult to analyze. In this thesis...

متن کامل

Unsupervised Transcription of Historical Documents

We present a generative probabilistic model, inspired by historical printing processes, for transcribing images of documents from the printing press era. By jointly modeling the text of the document and the noisy (but regular) process of rendering glyphs, our unsupervised system is able to decipher font structure and more accurately transcribe images into text. Overall, our system substantially...

متن کامل

Supervised Text Region Identification on Historical Documents

We present multi-column text region identification support for Ocular, the unsupervised historical printed document transcription project of Berg-Kirkpatrick et. al (2013). We use structured prediction with rich features defined on the input document and incorporate a transition model based on prior document layout assumptions. Our model is trained using a structured-SVM objective on a randomly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016