A comparative study of immersed-boundary and interpolated bounce-back methods in LBE

نویسندگان

  • Yan Peng
  • Li-Shi Luo
چکیده

The Interpolated Bounce-Back (IBB) method and Immersed-Boundary (IB) method are compared for fluid-solid boundary conditions in the Lattice Boltzmann Equation (LBE) in terms of their numerical accuracy and computational efficiency. We carry out simulations for the flow past a circular cylinder asymmetrically placed in the channel in two dimensions with the Reynolds number Re = 20 and 100, corresponding to steady and unsteady flows, respectively. The results obtained by the LBE method are compared with the existing data. We observe that the LBE with either the IBB or IB methods for the no-slip boundary conditions exhibits a second-order rate of convergence. While the computational cost for both methods are comparable, the interpolated bounce-back method is more accurate than the immersed-boundary method with the same mesh size. Consequently the IBB method is more efficient computationally, while the IB method is easier to implement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An evaluation of lattice Boltzmann schemes for porous medium flow simulation

We quantitatively evaluate the capability and accuracy of the lattice Boltzmann equation (LBE) for modeling flow through porous media. In particular, we conduct a comparative study of the LBE models with the multiple-relaxation-time (MRT) and the Bhatnagar– Gross–Krook (BGK) single-relaxation-time (SRT) collision operators. We also investigate several fluid–solid boundary conditions including: ...

متن کامل

A novel boundary condition for the simulation of the submerged bodies using lattice boltzmann method

In this study, we proposed a novel scheme for the implementation of the no-slip boundary condition in thelattice Boltzmann method (LBM) . In detail , we have substituted the classical bounce-back idea by the direct immersed boundary specification . In this way we construct the equilibrium density functions in such a way that it feels the no-slip boundaries . Therefore , in fact a kind of equili...

متن کامل

A Comparison Between the Interpolated Bounce-Back Scheme and the Immersed Boundary Method to Treat Solid Boundary Conditions for Laminar Flows in the Lattice Boltzmann Framework

In this paper, the interpolated bounce-back scheme and the immersed boundary method are compared in order to handle solid boundary conditions in the lattice Boltzmann method. These two approaches are numerically investigated in two test cases: a rigid fixed cylinder invested by an incoming viscous fluid and an oscillating cylinder in a calm viscous fluid. Findings in terms of velocity profiles ...

متن کامل

A Comparative Solution of Natural Convection in an Open Cavity using Different Boundary Conditions via Lattice Boltzmann Method

A Lattice Boltzmann method is applied to demonstrate the comparison results of simulating natural convection in an open end cavity using different hydrodynamic and thermal boundary conditions. The Prandtl number in the present simulation is 0.71, Rayleigh numbers are 104,105 and 106 and viscosities are selected 0.02 and 0.05. On-Grid bounce-back method with first-order accuracy and non-slip met...

متن کامل

Error assessment of lattice Boltzmann equation method for variable viscosity flows

In lattice Boltzmann simulations, variable viscosity can complicate the truncation error analysis and create additional interaction between the truncation error and the boundary condition error. In order to address this issue, two boundary conditions for the lattice Boltzmann equation (LBE) simulations are used, including an exact, but narrowly applicable scheme previously proposed by Noble et ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008