Nanostructuring gold wires for highly durable nanocatalysts toward selective reduction of nitro compounds and azides with organosilanes
نویسندگان
چکیده
منابع مشابه
Magnetically separable and recyclable Fe3O4-supported Ag nanocatalysts for reduction of nitro compounds and selective hydration of nitriles to amides in water.
As hybrid nanostructures have become more important in many fields of chemistry, Ag nanoparticles (NPs) are being increasingly immobilized onto Fe3O4 microspheres in situ. Structural characterization reveals that the Ag NPs are uniformly immobilized in the Fe3O4 microsphere-based supports. Moreover, Ag NPs are more stable in the hybrid structure than in the naked state and show high catalytic a...
متن کاملSelective production of light olefins from methanol over desilicated highly siliceous ZSM-5 nanocatalysts
Highly siliceous ZSM-5 nanocatalysts can dehydrate methanol to a wide range of hydrocarbons. In this study, the development of hierarchical H-ZSM-5 nanocatalysts (Si/Al=200) were reported for the methanol-toolefins (MTO) reaction. The nanocatalysts were prepared through a hydrothermal technique and treated by NaOH desilication. The parent and desilicated nanocatalysts were characterized using F...
متن کاملDesigning versatile heterogeneous catalysts based on Ag and Au nanoparticles decorated on chitosan functionalized graphene oxide.
Herein we report the covalent grafting of chitosan on graphene oxide (GO) followed by a simple approach for anchoring silver (AgNPs) and gold (AuNPs) nanoparticles onto a chitosan grafted graphene oxide surface by a NaBH4 reduction method. Catalytic activity of prepared heterogeneous GO grafted chitosan stabilized silver and gold nanocatalysts (GO-Chit-Ag/AuNPs) was explored for the reduction o...
متن کاملHighly selective conversion of nitrobenzenes using a simple reducing system combined with a trivalent indium salt and a hydrosilane.
Controlling the type of indium salt and hydrosilane enables a highly selective reduction of aromatic nitro compounds into three coupling compounds, azoxybenzenes, azobenzenes and diphenylhydrazines, and one reductive compound, anilines.
متن کاملOn-demand Hydrogen Production from Organosilanes at Ambient Temperature Using Heterogeneous Gold Catalysts
An environmentally friendly ("green"), H2-generation system was developed that involved hydrolytic oxidation of inexpensive organosilanes as hydrogen storage materials with newly developed heterogeneous gold nanoparticle catalysts. The gold catalyst functioned well at ambient temperature under aerobic conditions, providing efficient production of pure H2. The newly developed size-selective gold...
متن کامل