Deletion of cyclooxygenase-2 in the mouse increases arterial blood pressure with no impairment in renal NO production in response to chronic high salt intake.
نویسندگان
چکیده
Experiments were designed to test the hypothesis that cyclooxygenase-2 (COX-2) activity attenuates the blood pressure increase during high NaCl intake by stimulation of endothelial nitric oxide synthase (eNOS)-mediated NO synthesis in the kidney medulla. COX-2(-/-) (C57BL6) an COX-2(+/+) mice were fed a diet with 0.004% (low salt, LS) or 4% (high salt, HS) NaCl for 18 days. Arterial blood pressure was recorded continuously using indwelling catheters. Food and water intake and diuresis were measured in metabolic cages. Urine osmolality and excretion of electrolytes, cGMP, cAMP, and NOx were determined, as well as plasma NOx and cGMP. There was a significant dependence of blood pressure on salt intake and genotype: COX-2(-/-) exhibited higher blood pressure than COX-2(+/+) both on HS and LS intake. COX-2(+/+) littermates displayed an increase in blood pressure on HS versus LS (102.3 ± 1.1 mmHg vs. 91.9 ± 0.9 mmHg) day and night. The mice exhibited significant blood pressure increases during the awake phase (night) that were larger in COX-2(-/-) on HS diet compared with COX-2(+/+). Water intake, diuresis, Na(+), and osmolyte excretions and NOx and cGMP excretions were significantly and similarly elevated with HS in COX-2(-/-) and COX-2(+/+). In summary, C57BL6 mice exhibit a salt intake-dependent increase in arterial blood pressure with increased renal NO production. COX-2 activity has a general lowering effect on arterial blood pressure. COX-2 dampens NaCl-induced increases in arterial blood pressure in the awake phase. In conclusion, COX-2 activity attenuates the changes in nocturnal blood pressure during high salt intake, and COX-2 activity is not necessary for increased renal nitric oxide formation during elevated NaCl intake.
منابع مشابه
Hypoxia inducible factor-1α-mediated gene activation in the regulation of renal medullary function and salt sensitivity of blood pressure.
Many enzymes that produce natriuretic factors such as nitric oxide synthase (NOS), hemeoxygenase-1 (HO-1) and cyclooxygenase-2 (COX-2) are highly expressed in the renal medulla. These enzymes in the renal medulla are up-regulated in response to high salt intake. Inhibition of these enzymes within the renal medulla reduces sodium excretion and increases salt sensitivity of arterial blood pressur...
متن کاملProlonged Baroreflex Activation Abolishes Salt-Induced Hypertension After Reductions in Kidney Mass.
Chronic electric activation of the carotid baroreflex produces sustained reductions in sympathetic activity and arterial pressure and is currently being evaluated for therapy in patients with resistant hypertension. However, patients with significant impairment of renal function have been largely excluded from clinical trials. Thus, there is little information on blood pressure and renal respon...
متن کاملInhibition of cyclooxygenase-2 in the rat renal medulla leads to sodium-sensitive hypertension.
Cyclooxygenase-2 expression in the renal medulla is regulated by dietary salt intake. The present study was performed to determine the influence of chronic inhibition of medullary cyclooxygenase-2 on arterial blood pressure in conscious Sprague-Dawley rats maintained on a high-salt (4% NaCl) or a low-salt (0.4% NaCl) diet. Rats were uninephrectomized and instrumented with femoral arterial and f...
متن کاملExpression and function of COX isoforms in renal medulla: evidence for regulation of salt sensitivity and blood pressure.
Expression of cyclooxygenase (COX)-2, but not COX-1, in the renal medulla is stimulated by chronic salt loading; yet the functional implication of this phenomenon is incompletely understood. The present study examined the cellular localization and antihypertensive function of high-salt-induced COX-2 expression in the renal medulla, with a parallel assessment of the function of COX-1. COX-2 prot...
متن کاملSalt-Sensitive Hypertension Induced by Decoy of Transcription Factor Hypoxia-Inducible Factor-1 in the Renal Medulla
Hypoxia inducible factor (HIF)-1 , a transcription factor, is abundantly expressed in the renal medulla and regulates many oxygen-sensitive genes such as nitric oxide synthase, cyclooxygenase-2, and heme oxygenase-1. Given the important roles of these genes in the control of arterial pressure, the present study was to test the hypothesis that HIF-1 –mediated gene activation serves as an antihyp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 304 10 شماره
صفحات -
تاریخ انتشار 2013