How is a chordal graph like a supersolvable binary matroid?
نویسندگان
چکیده
Let G be a finite simple graph. From the pioneering work of R. P. Stanley it is known that the cycle matroid of G is supersolvable if and only if G is chordal. The chordal binary matroids are not in general supersolvable. Nevertheless we prove that every supersolvable binary matroid determines canonically a chordal graph.
منابع مشابه
Binary Supersolvable Matroids and Modular Constructions
Let Jt be the class of binary matroids without a Fano plane as a submatroid. We show that every supersolvable matroid in JÍ is graphic, corresponding to a chordal graph. Then we characterize the case that the modular join of two matroids is supersolvable. This is used to study modular flats and modular joins of binary supersolvable matroids. We decompose supersolvable matroids in JH as modular ...
متن کاملBroken Circuit Complexes: Factorizations and Generalizations
Motivated by the question of when the characteristic polynomial of a matroid factorizes, we study join-factorizations of broken circuit complexes and rooted complexes (a more general class of complexes). Such factorizations of complexes induce factorizations not only of the characteristic polynomial but also of the Orlik-Solomon algebra of the matroid. The broken circuit complex of a matroid fa...
متن کاملBroken circuit complexes: Factorizations and generalizations
Motivated by the question of when the characteristic polynomial of a matroid factorizes, we study join-factorizations of broken circuit complexes and rooted complexes (a more general class of complexes). Such factorizations of complexes induce factorizations not only of characteristic polynomial but also of the Orlik-Solomon algebra of the matroid. The broken circuit complex of a matroid factor...
متن کاملT-UNIQUENESS OF SOME FAMILIES OF k-CHORDAL MATROIDS
We define k-chordal matroids as a generalization of chordal matroids, and develop tools for proving that some k-chordal matroids are T-unique, that is, determined up to isomorphism by their Tutte polynomials. We apply this theory to wheels, whirls, free spikes, binary spikes, and certain generalizations.
متن کاملExtending a matroid by a cocircuit
Our main result describes how to extend a matroid so that its ground set is a modular hyperplane of the larger matroid. This result yields a new way to view Dowling lattices and new results about line-closed geometries. We complement these topics by showing that line-closure gives simple geometric proofs of the (mostly known) basic results about Dowling lattices. We pursue the topic of line-clo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 288 شماره
صفحات -
تاریخ انتشار 2004