How is a chordal graph like a supersolvable binary matroid?

نویسندگان

  • Raul Cordovil
  • David Forge
  • Sulamita Klein
چکیده

Let G be a finite simple graph. From the pioneering work of R. P. Stanley it is known that the cycle matroid of G is supersolvable if and only if G is chordal. The chordal binary matroids are not in general supersolvable. Nevertheless we prove that every supersolvable binary matroid determines canonically a chordal graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binary Supersolvable Matroids and Modular Constructions

Let Jt be the class of binary matroids without a Fano plane as a submatroid. We show that every supersolvable matroid in JÍ is graphic, corresponding to a chordal graph. Then we characterize the case that the modular join of two matroids is supersolvable. This is used to study modular flats and modular joins of binary supersolvable matroids. We decompose supersolvable matroids in JH as modular ...

متن کامل

Broken Circuit Complexes: Factorizations and Generalizations

Motivated by the question of when the characteristic polynomial of a matroid factorizes, we study join-factorizations of broken circuit complexes and rooted complexes (a more general class of complexes). Such factorizations of complexes induce factorizations not only of the characteristic polynomial but also of the Orlik-Solomon algebra of the matroid. The broken circuit complex of a matroid fa...

متن کامل

Broken circuit complexes: Factorizations and generalizations

Motivated by the question of when the characteristic polynomial of a matroid factorizes, we study join-factorizations of broken circuit complexes and rooted complexes (a more general class of complexes). Such factorizations of complexes induce factorizations not only of characteristic polynomial but also of the Orlik-Solomon algebra of the matroid. The broken circuit complex of a matroid factor...

متن کامل

T-UNIQUENESS OF SOME FAMILIES OF k-CHORDAL MATROIDS

We define k-chordal matroids as a generalization of chordal matroids, and develop tools for proving that some k-chordal matroids are T-unique, that is, determined up to isomorphism by their Tutte polynomials. We apply this theory to wheels, whirls, free spikes, binary spikes, and certain generalizations.

متن کامل

Extending a matroid by a cocircuit

Our main result describes how to extend a matroid so that its ground set is a modular hyperplane of the larger matroid. This result yields a new way to view Dowling lattices and new results about line-closed geometries. We complement these topics by showing that line-closure gives simple geometric proofs of the (mostly known) basic results about Dowling lattices. We pursue the topic of line-clo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 288  شماره 

صفحات  -

تاریخ انتشار 2004