Formate hydrogen lyase mediates stationary-phase deacidification and increases survival during sugar fermentation in acetoin-producing enterobacteria
نویسندگان
چکیده
Two fermentation types exist in the Enterobacteriaceae family. Mixed-acid fermenters produce substantial amounts of lactate, formate, acetate, and succinate, resulting in lethal medium acidification. On the other hand, 2,3-butanediol fermenters switch to the production of the neutral compounds acetoin and 2,3-butanediol and even deacidify the environment after an initial acidification phase, thereby avoiding cell death. We equipped three mixed-acid fermenters (Salmonella Typhimurium, S. Enteritidis and Shigella flexneri) with the acetoin pathway from Serratia plymuthica to investigate the mechanisms of deacidification. Acetoin production caused attenuated acidification during exponential growth in all three bacteria, but stationary-phase deacidification was only observed in Escherichia coli and Salmonella, suggesting that it was not due to the consumption of protons accompanying acetoin production. To identify the mechanism, 34 transposon mutants of acetoin-producing E. coli that no longer deacidified the culture medium were isolated. The mutations mapped to 16 genes, all involved in formate metabolism. Formate is an end product of mixed-acid fermentation that can be converted to H2 and CO2 by the formate hydrogen lyase (FHL) complex, a reaction that consumes protons and thus can explain medium deacidification. When hycE, encoding the large subunit of hydrogenase 3 that is part of the FHL complex, was deleted in acetoin-producing E. coli, deacidification capacity was lost. Metabolite analysis in E. coli showed that introduction of the acetoin pathway reduced lactate and acetate production, but increased glucose consumption and formate and ethanol production. Analysis of a hycE mutant in S. plymuthica confirmed that medium deacidification in this organism is also mediated by FHL. These findings improve our understanding of the physiology and function of fermentation pathways in Enterobacteriaceae.
منابع مشابه
Hydrogen production during fermentation of acetoin and acetylene by Pelobacter acetylenicus
Pelobacter aceO,lenicus accumulated only small amounts of H, (< 3.5 kPa) during fermentation of acetoin or acetylene to acetate and ethanol. Formate was also produced in small amounts ( -, 0.5 raM). Growth on acetoin was retarded by addition of ethanol, but not by addition of H., or formate. However. addition of H, and/or formate resulted in increased production of 2.3-butanediol. whereas addit...
متن کاملHydrogen metabolism in Shewanella oneidensis MR-1.
Shewanella oneidensis MR-1 is a facultative sediment microorganism which uses diverse compounds, such as oxygen and fumarate, as well as insoluble Fe(III) and Mn(IV) as electron acceptors. The electron donor spectrum is more limited and includes metabolic end products of primary fermenting bacteria, such as lactate, formate, and hydrogen. While the utilization of hydrogen as an electron donor h...
متن کاملThe Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase.
Bacillus subtilis is capable of producing 2,3-butanediol from acetoin by fermentation, but to date, the gene encoding the enzyme responsible, acetoin reductase/2,3-butanediol dehydrogenase (AR/BDH), has remained unknown. A search of the B. subtilis genome database with the amino acid sequences of functional AR/BDHs from Saccharomyces cerevisiae and Bacillus cereus resulted in the identification...
متن کاملGlycerol overproduction by engineered saccharomyces cerevisiae wine yeast strains leads to substantial changes in By-product formation and to a stimulation of fermentation rate in stationary phase
Six commercial wine yeast strains and three nonindustrial strains (two laboratory strains and one haploid strain derived from a wine yeast strain) were engineered to produce large amounts of glycerol with a lower ethanol yield. Overexpression of the GPD1 gene, encoding a glycerol-3-phosphate dehydrogenase, resulted in a 1.5- to 2.5-fold increase in glycerol production and a slight decrease in e...
متن کاملBiochemical and physiological characterization of the pyruvate formate-lyase Pfl1 of Chlamydomonas reinhardtii, a typically bacterial enzyme in a eukaryotic alga.
The unicellular green alga Chlamydomonas reinhardtii has a special type of anaerobic metabolism that is quite unusual for eukaryotes. It has two oxygen-sensitive [Fe-Fe] hydrogenases (EC 1.12.7.2) that are coupled to photosynthesis and, in addition, a formate- and ethanol-producing fermentative metabolism, which was proposed to be initiated by pyruvate formate-lyase (Pfl; EC 2.3.1.54). Pfl enzy...
متن کامل