Evaluating the peak-to-valley dose ratio of synchrotron microbeams using PRESAGE fluorescence
نویسندگان
چکیده
Synchrotron-generated microbeam radiotherapy holds great promise for future treatment, but the high dose gradients present conventional dosimetry with a challenge. Measuring the important peak-to-valley dose ratio (PVDR) of a microbeam-collimated synchrotron source requires both a dosimeter and an analysis method capable of exceptional spatial resolution. The PVDR is of great interest since it is the limiting factor for potential application of the microbeam radiation therapy technique clinically for its tissue-sparing properties (i.e. the valley dose should be below the tolerance of normal tissue). In this work a new method of measuring the dose response of PRESAGE dosimeters is introduced using the fluorescence from a 638 nm laser on a confocal laser-scanning microscope. This fluorescent microscopy method produces dosimetry data at a pixel size as low as 78 nm, giving a much better spatial resolution than optical computed tomography, which is normally used for scanning PRESAGE dosimeters. Using this technique the PVDR of the BL28B2 microbeam at the SPring-8 synchrotron in Japan is estimated to be approximately 52:1 at a depth of 2.5 mm. The PVDR was also estimated with EBT2 GAFchromic films as 30.5:1 at the surface in order to compare the PRESAGE fluorescent results with a more established dosimetry system. This estimation is in good agreement with previously measured ratios using other dosimeters and Monte Carlo simulations. This means that it is possible to use PRESAGE dosimeters with confocal microscopy for the determination of PVDR.
منابع مشابه
MOSFET dosimetry for microbeam radiation therapy at the European Synchrotron Radiation Facility.
Preclinical experiments are carried out with approximately 20-30 microm wide, approximately 10 mm high parallel microbeams of hard, broad-"white"-spectrum x rays (approximately 50-600 keV) to investigate microbeam radiation therapy (MRT) of brain tumors in infants for whom other kinds of radiotherapy are inadequate and/or unsafe. Novel physical microdosimetry (implemented with MOSFET chips in t...
متن کاملIn situ Biological Dose Mapping Estimates the Radiation Burden Delivered to ‘Spared’ Tissue between Synchrotron X-Ray Microbeam Radiotherapy Tracks
Microbeam radiation therapy (MRT) using high doses of synchrotron X-rays can destroy tumours in animal models whilst causing little damage to normal tissues. Determining the spatial distribution of radiation doses delivered during MRT at a microscopic scale is a major challenge. Film and semiconductor dosimetry as well as Monte Carlo methods struggle to provide accurate estimates of dose profil...
متن کاملمحاسبات دزیمتری برای رادیوتراپی با میکروباریکه های تابش سینکروترون در فانتوم آب و معادل سر توسط کد مونت کارلوی Geant4
Microbeam radiation therapy (MRT) is an innovative experimental method used for radioresistant tumours such as glioma especially in pediatric cancer. In MRT, the patient is irradiated with arrays of parallel and high-intensity X-ray microbeams. The MRT offers dose profiles consisting of a pattern of peaks and valleys. The peak-to-valley dose ratio (PVDR) is the most important metric determining...
متن کاملEvaluating the effect of Zinc Oxide nanoparticles doped with Gadolinium on dose enhancement factor by PRESAGE dosimeter
Background: New treatment modalities are developed with the aim of escalating tumor absorbed dose and simultaneously sparing the normal structures. The use of nanotechnology in cancer treatment offers some possibilities including destroying cancer tumors with minimal damage to healthy tissues. Zinc Oxide nanoparticles (ZnO NPs) are wide band gap semiconductors and seem to have a good effect on ...
متن کاملA first generation compact microbeam radiation therapy system based on carbon nanotube X-ray technology.
We have developed a compact microbeam radiation therapy device using carbon nanotube cathodes to create a linear array of narrow focal line segments on a tungsten anode and a custom collimator assembly to select a slice of the resulting wedge-shaped radiation pattern. Effective focal line width was measured to be 131 μm, resulting in a microbeam width of ∼300 μm. The instantaneous dose rate was...
متن کامل