Traffic Accidents Forecasting using Singular Value Decomposition and an Autoregressive Neural Network Based on PSO
نویسندگان
چکیده
In this paper, we propose a strategy to improve the forecasting of traffic accidents in Concepción, Chile. The forecasting strategy consists of four stages: embedding, decomposition, estimation and recomposition. At the first stage, the Hankel matrix is used to embed the original time series. At the second stage, the Singular Value Decomposition (SVD) technique is applied. SVD extracts the singular values and the singular vectors, which are used to obtain the components of low and high frequency. At the third stage, the estimation is implemented with an Autoregressive Neural Network (ANN) based on Particle Swarm Optimization (PSO). The final stage is recomposition, where the forecasted value is obtained. The results are compared with the values given by the conventional forecasting process. Our strategy shows high accuracy and is superior to the conventional process.
منابع مشابه
Smoothing Strategies Combined with ARIMA and Neural Networks to Improve the Forecasting of Traffic Accidents
Two smoothing strategies combined with autoregressive integrated moving average (ARIMA) and autoregressive neural networks (ANNs) models to improve the forecasting of time series are presented. The strategy of forecasting is implemented using two stages. In the first stage the time series is smoothed using either, 3-point moving average smoothing, or singular value Decomposition of the Hankel m...
متن کاملA Novel Multilevel-SVD Method to Improve Multistep Ahead Forecasting in Traffic Accidents Domain
Here is proposed a novel method for decomposing a nonstationary time series in components of low and high frequency. The method is based on Multilevel Singular Value Decomposition (MSVD) of a Hankel matrix. The decomposition is used to improve the forecasting accuracy of Multiple Input Multiple Output (MIMO) linear and nonlinear models. Three time series coming from traffic accidents domain are...
متن کاملComparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in Iran
This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...
متن کاملA Dimensionless Parameter Approach based on Singular Value Decomposition and Evolutionary Algorithm for Prediction of Carbamazepine Particles Size
The particle size control of drug is one of the most important factors affecting the efficiency of the nano-drug production in confined liquid impinging jets. In the present research, for this investigation the confined liquid impinging jet was used to produce nanoparticles of Carbamazepine. The effects of several parameters such as concentration, solution and anti-solvent flow rate and solvent...
متن کاملResearch on the Network Traffic Time Series Modeling and Forecasting Based on Wavelet Decomposition
Abstract A network traffic time series analysis and forecasting method based on wavelet decomposition is proposed in the paper. Firstly, non-stationary network traffic time series are decomposed into multiple stationary components, then various stationary components are modeled using the autoregressive moving average method and at last models of all components are composed to get the prediction...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Polibits
دوره 51 شماره
صفحات -
تاریخ انتشار 2015