Metabolism, pharmacokinetics, and excretion of a highly selective N-methyl-D-aspartate receptor antagonist, traxoprodil, in human cytochrome P450 2D6 extensive and poor metabolizers.
نویسندگان
چکیده
The excretion, biotransformation, and pharmacokinetics of a selective N-methyl-D-aspartate receptor antagonist, traxoprodil, were investigated in six healthy male volunteers, phenotyped either as CYP2D6 extensive or poor metabolizers of dextromethorphan. Each subject received an i.v. infusion of a single 50-mg (100 microCi) dose of [(14)C]traxoprodil. Approximately 89% of the administered dose was recovered in poor metabolizers (PMs) and 61% in extensive metabolizers (EMs), with the majority of the dose being excreted in the urine (86% in PMs and 52% in EMs). The elimination of traxoprodil was more rapid in EMs than in PMs with terminal elimination half-lives of 2.8 and 26.9 h, respectively, for EMs and PMs. Area under the plasma concentration-time curve from time 0 to T (AUC((0-Tlast))) values for unchanged traxoprodil were 1.2 and 32.7% of the corresponding AUC values for total radioactivity in EMs and PMs, respectively. Traxoprodil was metabolized in both EMs and PMs, with approximately 7 and 50% of the administered radioactivity excreted as unchanged drug in the excreta of EMs and PMs, respectively. Hydroxylation at the 3-position of the hydroxyphenyl ring and methylation of the resulting catechol followed by conjugation were identified as the main metabolic pathways in EMs. In contrast, direct conjugation of traxoprodil with glucuronic or sulfuric acid was the major pathway in PMs. In vitro studies using CYP2D6-selective inhibitor and recombinant enzyme also support that the metabolism of traxoprodil is mainly mediated by CYP2D6. Taken together, these studies suggest that traxoprodil is eliminated mainly by Phase I oxidative metabolism mediated by CYP2D6 isozyme in EMs and by Phase II conjugation and renal clearance of parent in PMs.
منابع مشابه
Meta-analysis of Cyp2d6 Metabolizer Phenotype and Metoprolol Pharmacokinetics
Metoprolol, a commonly prescribed β-blocker, is primarily metabolized by cytochrome P450 2D6 (CYP2D6), an enzyme with substantial genetic heterogeneity. Several smaller studies have shown that metoprolol pharmacokinetics is influenced by CYP2D6 genotype and metabolizer phenotype. To increase robustness of metoprolol pharmacokinetic estimates, a systematic review and meta-analysis of pharmacokin...
متن کاملPharmacokinetics of citalopram in relation to genetic polymorphism of CYP2C19.
The study was designed to define the contribution of cytochrome p450 2C19 (CYP2C19) and cytochrome p450 3A4 (CYP3A4) to citalopram N-demethylation and to evaluate the relationship between the disposition of citalopram and CYP2C19 genotype. A single oral 40-mg dose of citalopram was administered to eight extensive metabolizers and five poor metabolizers recruited from 77 healthy Chinese voluntee...
متن کاملPhysiologically Based Pharmacokinetic Modeling of Tamoxifen and its Metabolites in Women of Different CYP2D6 Phenotypes Provides New Insight into the Tamoxifen Mass Balance
Tamoxifen is a first-line endocrine agent in the mechanism-based treatment of estrogen receptor positive (ER(+)) mammary carcinoma and applied to breast cancer patients all over the world. Endoxifen is a secondary and highly active metabolite of tamoxifen that is formed among others by the polymorphic cytochrome P450 2D6 (CYP2D6). It is widely accepted that CYP2D6 poor metabolizers exert a pron...
متن کاملPsychotropic medications and cytochrome P450 2D6: pharmacokinetic considerations in the elderly.
BACKGROUND The genetically polymorphic cytochrome P450 2D6 isozyme (CYP2D6) is responsible for the metabolism of numerous psychotropic medications pertinent to the practice of geriatric psychiatry. Optimal use of psychotropics in the elderly requires a thorough understanding of the determinants of marked variability in plasma concentrations. This review article will focus on basic pharmacokinet...
متن کاملNonselective and NR2B-selective N-methyl-D-aspartic acid receptor antagonists produce antinociception and long-term relief of allodynia in acute and neuropathic pain.
BACKGROUND At low dose, the nonselective N-methyl-D-aspartate receptor antagonist ketamine produces potent analgesia. In humans, psychedelic side effects limit its use. To assess whether other N-methyl-D-aspartate receptor antagonist have an improved therapeutic utility index, we compared antinociceptive, side effect, and locomotor activity of three N-methyl-D-aspartate receptor antagonists. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 31 1 شماره
صفحات -
تاریخ انتشار 2003