Two Applications of the Gaussian Poincaré Inequality in the Shannon Theory

نویسندگان

  • Silas L. Fong
  • Vincent Y. F. Tan
چکیده

We employ the Gaussian Poincaré inequality for two tasks in the Shannon theory. First, we show that the Gaussian broadcast channel admits a strong converse. Second, we demonstrate that the empirical output distribution of a delay-limited code for the AWGN channel with quasi-static fading and with non-vanishing probability of error converges to the maximum mutual information output distribution (in the normalized relative entropy sense).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cramér-Rao and moment-entropy inequalities for Renyi entropy and generalized Fisher information

The moment-entropy inequality shows that a continuous random variable with given second moment and maximal Shannon entropy must be Gaussian. Stam’s inequality shows that a continuous random variable with given Fisher information and minimal Shannon entropy must also be Gaussian. The CramérRao inequality is a direct consequence of these two inequalities. In this paper the inequalities above are ...

متن کامل

The Rate of Entropy for Gaussian Processes

In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...

متن کامل

On the generalization of Trapezoid Inequality for functions of two variables with bounded variation and applications

In this paper, a generalization of trapezoid inequality for functions of two independent variables with bounded variation and some applications are given.

متن کامل

Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions

Hermite-Hadamard inequality is one of the fundamental applications of convex functions in Theory of Inequality. In this paper, Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions are proven.

متن کامل

Extended inequalities for weighted Renyi entropy involving generalized Gaussian densities

In this paper the author analyzes the weighted Renyi entropy in order to derive several inequalities in weighted case. Furthermore, using the proposed notions α-th generalized deviation and (α, p)-th weighted Fisher information, extended versions of the moment-entropy, Fisher information and Cramér-Rao inequalities in terms of generalized Gaussian densities are given. 1 The weighted p-Renyi ent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015