Error estimation and adaptivity for incompressible hyperelasticity
نویسندگان
چکیده
A Galerkin FEM is developed for nonlinear, incompressible (hyper) elasticity that takes account of nonlinearities in both the strain tensor and the relationship between the strain tensor and the stress tensor. By using suitably defined linearised dual problems with appropriate boundary conditions, a posteriori error estimates are then derived for both linear functionals of the solution and linear functionals of the stress on a boundary, where Dirichlet boundary conditions are applied. A second, higher order method for calculating a linear functional of the stress on a Dirichlet boundary is also presented together with an a posteriori error estimator for this approach. An implementation for a 2D model problem with known solution, where the entries of the strain tensor exhibit large, rapid variations, demonstrates the accuracy and sharpness of the error estimators. Finally, using a selection of model problems, the a posteriori error estimate is shown to provide a basis for effective mesh adaptivity. Copyright © 2014 John Wiley & Sons, Ltd.
منابع مشابه
Adaptivity and a Posteriori Error Control for Bifurcation Problems II: Incompressible Fluid Flow in Open Systems with Z2 Symmetry
Abstract. In this article we consider the a posteriori error estimation and adaptive mesh refinement of discontinuous Galerkin finite element approximations of the bifurcation problem associated with the steady incompressible Navier–Stokes equations. Particular attention is given to the reliable error estimation of the critical Reynolds number at which a steady pitchfork bifurcation occurs when...
متن کاملCliffe, Andrew and Hall, Edward and Houston, Paul and Phipps, Eric T. and Salinger, Andrew G. (2012) Adaptivity and a posteriori error control for bifurcation problems III: incompressible fluid flow in open systems
متن کامل
Equilibrium method for postprocessing and error estimation in the finite element method
Modeling of elastic thin-walled beams, plates and shells as 1D and 2D boundary value problems is valid in undisturbed subdomains. Disturbances near supports and free edges, in the vicinity of concentrated loads and at thickness jumps cannot be described by 1D and 2D BVP’s. In these disturbed subdomains dimensional (d)-adaptivity and possibly model (m)-adaptivity have to be performed and coupled...
متن کاملA Posteriori Error Estimation and Mesh Adaptivity for Finite Volume and Finite Element Methods
Error representation formulas and a posteriori error estimates for numerical solutions of hyperbolic conservation laws are considered with specialized variants given for the Godunov finite volume and discontinuous Galerkin finite element methods. The error representation formulas utilize the solution of a dual problem to capture the nonlocal error behavior present in hyperbolic problems. The er...
متن کاملEvaluation of two lattice Boltzmann methods for fluid flow simulation in a stirred tank
In the present study, commonly used weakly compressible lattice Boltzmann method and Guo incompressible lattice Boltzmann method have been used to simulate fluid flow in a stirred tank. For this purpose a 3D Parallel code has been developed in the framework of the lattice Boltzmann method. This program has been used for simulation of flow at different geometries such as 2D channel fluid flow an...
متن کامل