Dephosphorylation of ezrin as an early event in renal microvillar breakdown and anoxic injury.

نویسندگان

  • J Chen
  • J A Cohn
  • L J Mandel
چکیده

Disruption of the renal proximal tubule (PT) brush border is a prominent early event during ischemic injury to the kidney. The molecular basis for this event is unknown. Within the brush border, ezrin may normally link the cytoskeleton to the cell plasma membrane. Anoxia causes ezrin to dissociate from the cytoskeleton and also causes many cell proteins to become dephosphorylated in renal PTs. This study examines the hypothesis that ezrin dephosphorylation accompanies and may mediate the anoxic disruption of the rabbit renal PT. During normoxia, 73 +/- 3% of the cytoskeleton-associated (Triton-insoluble) ezrin was phosphorylated, but 88 +/- 6% of dissociated (Triton-soluble) ezrin was dephosphorylated. Phosphorylation was on serine/threonine resides, since ezrin was not detectable by an antibody against phosphotyrosine. After 60 min of anoxia, phosphorylation of total intracellular ezrin significantly decreased from 72 +/- 2% to 21 +/- 9%, and ezrin associated with the cytoskeleton decreased from 91 +/- 2% to 58 +/- 2%. Calyculin A (1 microM), the serine/threonine phosphatase inhibitor, inhibited the dephosphorylation of ezrin during anoxia by 57% and also blocked the dissociation of ezrin from the cytoskeleton by 53%. Our results demonstrate that (i) the association of ezrin with the renal microvillar cytoskeleton is correlated with phosphorylation of ezrin serine/threonine residues and (ii) anoxia may cause disruption of the renal brush border by dephosphorylating ezrin and thereby dissociating the brush border membrane from the cytoskeleton.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ERM (Ezrin/Radixin/Moesin)-based Molecular Mechanism of Microvillar Breakdown at an Early Stage of Apoptosis

Breakdown of microvilli is a common early event in various types of apoptosis, but its molecular mechanism and implications remain unclear. ERM (ezrin/radixin/moesin) proteins are ubiquitously expressed microvillar proteins that are activated in the cytoplasm, translocate to the plasma membrane, and function as general actin filament/plasma membrane cross-linkers to form microvilli. Immunofluor...

متن کامل

Rac1 mediates collapse of microvilli on chemokine-activated T lymphocytes.

Lymphocytes circulate in the blood and upon chemokine activation rapidly bind, where needed, to microvasculature to mediate immune surveillance. Resorption of microvilli is an early morphological alteration induced by chemokines that facilitates lymphocyte emigration. However, the antecedent molecular mechanisms remain largely undefined. We demonstrate that Rac1 plays a fundamental role in chem...

متن کامل

Ischemic injury induces ADF relocalization to the apical domain of rat proximal tubule cells.

Breakdown of proximal tubule cell apical membrane microvilli is an early-occurring hallmark of ischemic acute renal failure. Intracellular mechanisms responsible for these apical membrane changes remain unknown, but it is known that actin cytoskeleton alterations play a critical role in this cellular process. Our laboratory previously demonstrated that ischemia-induced cell injury resulted in d...

متن کامل

Planktonic Foraminifera of the Dariyan formation and implications of Oceanic Anoxic Event 1a

The investigated section cropping out in Kuh-e-Banesh, Zagros basin (southern Iran) is represented by limestone, Cherty beds and marllevels bearing abundant Planktonic foraminifers, radiolarian microfaunas, and ammonite imprints. For the first time, well to moderatelypreserved forms of Planktonic foraminifera have been extracted from black shale and marls levels. Extracted biota was studied wit...

متن کامل

Rho-dependent and -independent activation mechanisms of ezrin/radixin/moesin proteins: an essential role for polyphosphoinositides in vivo.

Ezrin/radixin/moesin (ERM) proteins crosslink actin filaments to plasma membranes and are involved in the organization of the cortical cytoskeleton, especially in the formation of microvilli. ERM proteins are reported to be activated as crosslinkers in a Rho-dependent manner and are stabilized when phosphorylated at their C-terminal threonine residue to create C-terminal threonine-phosphorylate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 92 16  شماره 

صفحات  -

تاریخ انتشار 1995