The Riemann-roch Theorem and Serre Duality

نویسنده

  • JOHN HALLIDAY
چکیده

We introduce sheaves and sheaf cohomology and use them to prove the Riemann-Roch theorem and Serre duality. The main proofs follow the treatment in Forster [3].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mac Williams identities for linear codes as polarized Riemann-Roch conditions

The present note establishes the equivalence of Mac Williams identities for an additive code C and its dual C to Polarized Riemann-Roch Conditions on their ζ-functions. In such a way, the duality of additive codes appears to be a polarized form of the Serre duality on a smooth irreducible projective curve.

متن کامل

The Grothendieck-riemann-roch Theorem for Varieties

We give an exposition of the Grothendieck-Riemann-Roch theorem for algebraic varieties. Our proof follows Borel and Serre [3] and Fulton [5] closely, emphasizing geometric considerations and intuition whenever possible.

متن کامل

Quantum Riemann – Roch

Given a holomorphic vector bundle E : EX → X over a compact Kähler manifold, one introduces twisted GW-invariants of X replacing virtual fundamental cycles of moduli spaces of stable maps f : Σ → X by their cap-product with a chosen multiplicative characteristic class of H(Σ, fE)− H(Σ, fE). Using the formalism [18] of quantized quadratic hamiltonians, we express the descendent potential for the...

متن کامل

Quantum Riemann–roch, Lefschetz and Serre

Given a holomorphic vector bundle E over a compact Kähler manifold X, one defines twisted Gromov-Witten invariants of X to be intersection numbers in moduli spaces of stable maps f : Σ → X with the cap product of the virtual fundamental class and a chosen multiplicative invertible characteristic class of the virtual vector bundle H0(Σ, f∗E) H1(Σ, f∗E). Using the formalism of quantized quadratic...

متن کامل

Monomials, Binomials, and Riemann-Roch

The Riemann-Roch theorem on a graph G is closely related to Alexander duality in combinatorial commutive algebra. We study the lattice ideal given by chip firing on G and the initial ideal whose standard monomials are the G-parking functions. When G is a saturated graph, these ideals are generic and the Scarf complex is a minimal free resolution. Otherwise, syzygies are obtained by degeneration...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016