Evolutionary Neural Network model for West Texas Intermediate crude oil price prediction
نویسندگان
چکیده
This paper proposes an alternative approach based on a genetic algorithm and neural network (GA–NN) for the prediction of the West Texas Intermediate (WTI) crude oil price. Comparative simulation results suggested that the proposed GA–NN approach is better than the baseline algorithms in terms of prediction accuracy and computational efficiency. Mann–Whitney test results indicated that the WTI crude oil price predicted by the proposed GA–NN and the observed price are statistically equal. Further comparison of the proposed GA–NN with previous studies indicated performance improvement over existing results. The proposed model can be useful in the formulation of policies related to international crude oil price estimations, development plans and industrial production. 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
An EMD-Based Neural Network Ensemble Learning Model for World Crude Oil Spot Price Forecasting
In this study, an empirical mode decomposition (EMD) based neural network ensemble learning model is proposed for world crude oil spot price modeling and forecasting. For this purpose, the original crude oil spot price series were first decomposed into a finite and often small number of intrinsic mode functions (IMFs). Then the three-layer feed-forward neural network (FNN) model was used to mod...
متن کاملOil Price Forecasting with an EMD-Based Multiscale Neural Network Learning Paradigm
In this study, a multiscale neural network learning paradigm based on empirical mode decomposition (EMD) is proposed for crude oil price prediction. In this learning paradigm, the original price series are first decomposed into various independent intrinsic mode components (IMCs) with a range of frequency scales. Then the internal correlation structures of different IMCs are explored by neural ...
متن کاملImproved Crude Oil Price Forecasting With Statistical Learning Methods
Reliable forecasts of the price of oil are of interest for a wide range of applications. For example, central banks and private sector forecasters view the price of oil as one of the key variables in generating macroeconomic projections and in assessing macroeconomic risks. Of particular interest is the question of the extent to which the price of oil is helpful in predicting recessions. This p...
متن کاملForecasting Crude Oil prices Volatility and Value at Risk: Single and Switching Regime GARCH Models
Forecasting crude oil price volatility is an important issues in risk management. The historical course of oil price volatility indicates the existence of a cluster pattern. Therefore, GARCH models are used to model and more accurately predict oil price fluctuations. The purpose of this study is to identify the best GARCH model with the best performance in different time horizons. To achieve th...
متن کاملTesting Crude Oil Market Efficiency Using Artificial Neural Networks
This paper evaluates the weak-form efficiency of the crude oil markets using the artificial neural network (ANN) model. Based on the daily historical data of the West Texas Intermediate (WTI) crude oil spot price over the period (02 January 198631 December 2013), the model was trained using backpropagation algorithm. The output of the neural network represents the predicted prices which are con...
متن کامل