Optimal computing budget allocation for Monte Carlo simulation with application to product design
نویسندگان
چکیده
Ordinal optimization has emerged as an efficient technique for simulation and optimization, converging exponentially in many cases. In this paper, we present a new computing budget allocation approach that further enhances the efficiency of ordinal optimization. Our approach intelligently determines the best allocation of simulation trials or samples necessary to maximize the probability of identifying the optimal ordinal solution. We illustrate the approach s benefits and ease of use by applying it to two electronic circuit design problems. Numerical results indicate the approach yields significant savings in computation time above and beyond the use of ordinal optimization. 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
Maximizing Quantitative Traits in the Mating Design Problem via Simulation-Based Pareto Estimation
Commercial plant breeders improve economically important traits by selectively mating individuals from a given breeding population. Potential pairings are evaluated before the growing season using Monte Carlo simulation, and a mating design is created to allocate a fixed breeding budget across the parent pairs to achieve desired population outcomes. We introduce a novel objective function for t...
متن کاملApplying Point Estimation and Monte Carlo Simulation Methods in Solving Probabilistic Optimal Power Flow Considering Renewable Energy Uncertainties
The increasing penetration of renewable energy results in changing the traditional power system planning and operation tools. As the generated power by the renewable energy resources are probabilistically changed, the certain power system analysis tolls cannot be applied in this case. Probabilistic optimal power flow is one of the most useful tools regarding the power system analysis in presen...
متن کاملDistribution network design under demand uncertainty using genetic algorithm and Monte Carlo simulation approach: a case study in pharmaceutical industry
Distribution network design as a strategic decision has long-term effect on tactical and operational supply chain management. In this research, the location-allocation problem is studied under demand uncertainty. The purposes of this study were to specify the optimal number and location of distribution centers and to determine the allocation of customer demands to distribution centers. The m...
متن کاملDistribution network design under demand uncertainty using genetic algorithm and Monte Carlo simulation approach: a case study in pharmaceutical industry
Distribution network design as a strategic decision has long-term effect on tactical and operational supply chain management. In this research, the location– allocation problem is studied under demand uncertainty. The purposes of this study were to specify the optimal number and location of distribution centers and to determine the allocation of customer demands to distribution centers. ...
متن کاملAsymptotic optimal tradeoff inMonteCarlo simulation of security prices
This paper presents an efficient algorithm for the allocation of computing resources to the problem of Monte Carlo simulation of continuous-time security prices. The asymptotic optimal tradeoff m = c n between increasing n, the number of time intervals and, increasing m, the number of simulations, given a limited budget of computer time, is found for the discrete-time Euler scheme. The constant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Simulation Modelling Practice and Theory
دوره 11 شماره
صفحات -
تاریخ انتشار 2003