Significant Big Data Interpretation using Map Reduce Paradigm
نویسندگان
چکیده
The development of ontologies involves continuous but relatively small modifications. Even after a number of changes, ontology and its previous versions usually share most of their axioms. For large and complex ontologies this may require a few minutes, or even a few hours. Cognitive on a Web scale becomes increasingly stimulating because of the large volume of data involved and the complexity of the task. Full re-reasoning over the entire dataset at every update is too time-consuming to be practical. Semantic information has been reduced by using Hadoop framework with simple machine learning algorithm. Each level of mapping and reducing is based on k-means clustering technique. Large set of information can be constructing or modified with the help of simple pattern based grouping. Dynamically grouping dependencies can be made based on attributes. Clustered values have got modifications like addition. At the end user query has been retrieved with the help of grouped items. The system has been assessed on the BTC benchmark and the results show that this method outperforms related ones in nearly all aspects.
منابع مشابه
BIG Data and Methodology - A
Big data is a collection of massive and complex data sets that include the huge quantities of data, social media analytics, data management capabilities, real-time data. Big data analytics is the process of examining large amounts of data. Big Data is characterized by the dimensions volume, variety, and velocity, while there are some wellestablished methods for big data processing such as Hadoo...
متن کاملMining Frequent Item Sets Using Map Reduce Paradigm
In Text categorization techniques like Text classification or clustering, finding frequent item sets is an acquainted method in the current research trends. Even though finding frequent item sets using Apriori algorithm is a widespread method, later DHP, partitioning, sampling, DIC, Eclat, FP-growth, H-mine algorithms were shown better performance than Apriori in standalone systems. In real sce...
متن کاملBig Data Mining using Map Reduce: A Survey Paper
Big data is large volume, heterogeneous, distributed data. Big data applications where data collection has grown continuously, it is expensive to manage, capture or extract and process data using existing software tools. For example Weather Forecasting, Electricity Demand Supply, social media and so on. With increasing size of data in data warehouse it is expensive to perform data analysis. Dat...
متن کاملLinguistic Aggregation Functions using the MapReduce Paradigm
We explore the possible benefit that provides a linguistic approach to Big Data. The proposal illustrates how implement Linguistic Aggregation Functions using the MapReduce paradigm. The best known paradigm applied to Big Data. The proposal allows several benefits to Big Data e.g., it allows to interpret data in a more intuitive way, reduce data size into different levels of granularity, and ma...
متن کاملBig Data: Tutorial and guidelines on information and process fusion for analytics algorithms with MapReduce
We live in a world were data are generated from a myriad of sources, and it is really cheap to collect and storage such data. However, the real benefit is not related to the data itself, but with the algorithms that are capable of processing such data in a tolerable elapse time, and to extract valuable knowledge from it. Therefore, the use of Big Data Analytics tools provide very significant ad...
متن کامل