RNAi suppressor P19 can be broadly exploited for enhanced adenovirus replication and microRNA knockdown experiments
نویسندگان
چکیده
RNA interference (RNAi) is a key regulator of various biological systems including viral infection. Within a virus life cycle gene products can be modulated by the RNA interference (RNAi) pathway which can crucially impact productive virus replication. Herein we explored the RNA interference suppressor protein P19 derived from a plant virus and we found that P19 enhanced adenovirus replication up to 100-fold. Critical factors responsible for this observation were overexpression of adenovirus encoded genes on mRNA and protein levels. To investigate the impact of this phenomenon on recombinant viruses, we exploited its feasibility for therapeutic and genomic applications. We found that P19 significantly increased recombinant adenovirus yields enabling up-scaling for preclinical and clinical studies. Moreover, adenoviruses possessed significantly higher oncolytic activity by expression of P19. Finally, we show that introducing a p19 expression cassette into high-capacity adenovirus provides a strategy to analyze RNAi knockdown in a tissue-specific manner.
منابع مشابه
مهار بیان ژن GFP به وسیله تداخل RNA (RNAi) در دودمان سلولی کارسینومای جنینی P19
Introduction: RNA interference (RNAi) is a phenomenon of gene silencing that uses double-stranded RNA (dsRNA), specifically inhibits gene expression by degrading mRNA efficiently. The mediators of degradation are 21- to 23-nt small interfering RNAs (siRNA). The use of siRNAs as inhibitors of gene expression has been shown to be an effective way of studying gene function in mammalian cells. Ai...
متن کاملEnhancement of RNA Interference Effect in P19 EC Cells by an RNA-dependent RNA Polymerase
Background: RNA interference (RNAi) is a phenomenon uses double-stranded RNA (dsRNA) to specifically inhibit gene expression. The non-specific silencing caused by interferon response to dsRNA in mammalian cells limits the potential of utilizing RNAi to study gene function. Duplexes of 21-nucleotide short interfering dsRNA (siRNA) inhibit gene expression by RNAi. In some organisms, siRNA can als...
متن کاملp53-dependent antiviral RNA-interference facilitates tumor-selective viral replication
RNA-interference (RNAi) is a potent tool for specific gene silencing. In this study, we developed an adenovirus for conditional replication in p53-dysfunctional tumor cells that uses p53-selective expression of a microRNA-network directed against essential adenoviral genes. Compared to a control virus that expressed a scrambled microRNA-network, antiviral RNAi selectively attenuated viral repli...
متن کاملAdenovirus VA1 noncoding RNA can inhibit small interfering RNA and MicroRNA biogenesis.
Although inhibition of RNA interference (RNAi) by plant virus proteins has been shown to enhance viral replication and pathogenesis in plants, no viral gene product has as yet been shown to inhibit RNAi in vertebrate cells. Here, we present evidence demonstrating that the highly structured approximately 160-nucleotide adenoviral VA1 noncoding RNA can inhibit RNAi at physiological levels of expr...
متن کاملUtility of P19 Gene-Silencing Suppressor for High Level Expression of Recombinant Human Therapeutic Proteins in Plant Cells
Background: The potential of plants, as a safe and eukaryotic system, is considered in the production of recombinant therapeutic human protein today; but the expression level of heterologous proteins is limited by the post-transcriptional gene silencing (PTGS) response in this new technology. The use of viral suppressors of gene silencing can prevent PTGS and improve transient expression level ...
متن کامل