ReinforceWalk: Learning to Walk in Graph with Monte Carlo Tree Search

نویسندگان

  • Yelong Shen
  • Jianshu Chen
  • Po-Sen Huang
  • Yuqing Guo
  • Jianfeng Gao
چکیده

Learning to walk over a graph towards a target node for a given input query and a source node is an important problem in applications such as knowledge graph reasoning. It can be formulated as a reinforcement learning (RL) problem that has a known state transition model, but with partial observability and sparse reward. To overcome these challenges, we develop a graph walking agent called ReinforceWalk, which consists of a deep recurrent neural network (RNN) and a Monte Carlo Tree Search (MCTS). To address partial observability, the RNN encodes the history of observations and map it into the Q-value, the policy and the state value. In order to effectively train the agent from sparse reward, we combine MCTS with the RNN policy to generate trajectories with more positive rewards. From these trajectories, we update the network in an off-policy manner using Q-learning and improves the RNN policy. Our proposed RL algorithm repeatedly applies this policy improvement step to learn the entire model. At testing stage, the MCTS is also combined with the RNN to predict the target node with higher accuracy. Experiment results on several graph-walking benchmarks show that we are able to learn better policies from less number of rollouts compared to other baseline methods, which are mainly based on policy gradient method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Monte Carlo-Based Search Strategy for Dimensionality Reduction in Performance Tuning Parameters

Redundant and irrelevant features in high dimensional data increase the complexity in underlying mathematical models. It is necessary to conduct pre-processing steps that search for the most relevant features in order to reduce the dimensionality of the data. This study made use of a meta-heuristic search approach which uses lightweight random simulations to balance between the exploitation of ...

متن کامل

Monte-Carlo Exploration for Deterministic Planning

Search methods based on Monte-Carlo simulation have recently led to breakthrough performance improvements in difficult game-playing domains such as Go and General Game Playing. Monte-Carlo Random Walk (MRW) planning applies MonteCarlo ideas to deterministic classical planning. In the forward chaining planner ARVAND, MonteCarlo random walks are used to explore the local neighborhood of a search ...

متن کامل

Deep Reinforcement Learning with Model Learning and Monte Carlo Tree Search in Minecraft

Deep reinforcement learning has been successfully applied to several visual-input tasks using model-free methods. In this paper, we propose a model-based approach that combines learning a DNN-based transition model with Monte Carlo tree search to solve a block-placing task in Minecraft. Our learned transition model predicts the next frame and the rewards one step ahead given the last four frame...

متن کامل

Monte-Carlo Tree Search in Production Management Problems

Classical search algorithms rely on the existence of a sufficiently powerful evaluation function for non-terminal states. In many task domains, the development of such an evaluation function requires substantial effort and domain knowledge, or is not even possible. As an alternative in recent years, Monte-Carlo evaluation has been succesfully applied in such task domains. In this paper, we appl...

متن کامل

Learning Partial Policies to Speedup MDP Tree Search

A popular approach for online decision making in large MDPs is time-bounded tree search. The effectiveness of tree search, however, is largely influenced by the action branching factor, which limits the search depth given a time bound. An obvious way to reduce action branching is to consider only a subset of potentially good actions at each state as specified by a provided partial policy. In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.04394  شماره 

صفحات  -

تاریخ انتشار 2018