Knockout of RP2 decreases GRK1 and rod transducin subunits and leads to photoreceptor degeneration in zebrafish.

نویسندگان

  • Fei Liu
  • Jiaxiang Chen
  • Shanshan Yu
  • Rakesh Kotapati Raghupathy
  • Xiliang Liu
  • Yayun Qin
  • Chang Li
  • Mi Huang
  • Shengjie Liao
  • Jiuxiang Wang
  • Jian Zou
  • Xinhua Shu
  • Zhaohui Tang
  • Mugen Liu
چکیده

Retinitis pigmentosa (RP) affects about 1.8 million individuals worldwide. X-linked retinitis pigmentosa (XLRP) is one of the most severe forms of RP. Nearly 85% of XLRP cases are caused by mutations in the X-linked retinitis pigmentosa 2 (RP2) and RPGR. RP2 has been considered to be a GTPase activator protein for ARL3 and to play a role in the traffic of ciliary proteins. The mechanism of how RP2 mutations cause RP is still unclear. In this study, we generated an RP2 knockout zebrafish line using transcription activator-like effector nuclease technology. Progressive retinal degeneration could be observed in the mutant zebrafish. The degeneration of rods' outer segments (OSs) is predominant, followed by the degeneration of cones' OS. These phenotypes are similar to the characteristics of RP2 patients, and also partly consistent with the phenotypes of RP2 knockout mice and morpholino-mediated RP2 knockdown zebrafish. For the first time, we found RP2 deletion leads to decreased protein levels and abnormal retinal localizations of GRK1 and rod transducin subunits (GNAT1 and GNB1) in zebrafish. Furthermore, the distribution of the total farnesylated proteins in zebrafish retina is also affected by RP2 ablation. These molecular alterations observed in the RP2 knockout zebrafish might probably be responsible for the gradual loss of the photoreceptors' OSs. Our work identified the progression of retinal degeneration in RP2 knockout zebrafish, provided a foundation for revealing the pathogenesis of RP caused by RP2 mutations, and would help to develop potential therapeutics against RP in further studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A model for transport of membrane-associated phototransduction polypeptides in rod and cone photoreceptor inner segments

We discuss putative mechanisms of membrane protein transport in photoreceptors based on Pde6d and Gucy2e/Gucy2f knockout mice. Knockout of the Pde6d gene encoding PrBP/delta, a prenyl binding protein present in the retina at relatively high levels, was shown to impair transport of G-protein coupled receptor kinase 1 (GRK1) and cone phosphodiesterase alpha' subunit (PDE6alpha') to the rod and co...

متن کامل

Light-dependent redistribution of visual arrestins and transducin subunits in mice with defective phototransduction.

PURPOSE The light-dependent redistribution of phototransduction components in photoreceptor cells plays a role in light adaptation. Upon illumination, rod and cone arrestins (Arr and cArr) translocate from the inner to the outer segments while transducin subunits (Talpha, Tbetagamma) translocate in the opposite direction. The underlying translocation mechanisms are unclear. This study examines ...

متن کامل

Functional Analysis of Retinitis Pigmentosa 2 (RP2) Protein Reveals Variable Pathogenic Potential of Disease-Associated Missense Variants

Genetic mutations are frequently associated with diverse phenotypic consequences, which limits the interpretation of the consequence of a variation in patients. Mutations in the retinitis pigmentosa 2 (RP2) gene are associated with X-linked RP, which is a phenotypically heterogenic form of retinal degeneration. The purpose of this study was to assess the functional consequence of disease-associ...

متن کامل

Deletion of GRK1 causes retina degeneration through a transducin-independent mechanism.

Rpe65(-/-) mice are unable to produce 11-cis-retinal, the chromophore of visual pigments. Consequently, the pigment is present as the apoprotein opsin with a minute level of pigment containing 9-cis-retinal as chromophore. Notably, a 10-20% fraction of this opsin is mono-phosphorylated independently of light conditions. To determine the role of rhodopsin kinase (GRK1) in phosphorylating this op...

متن کامل

Effect of g protein-coupled receptor kinase 1 (Grk1) overexpression on rod photoreceptor cell viability.

PURPOSE Photoreceptor rhodopsin kinase (Rk, G protein-dependent receptor kinase 1 [Grk1]) phosphorylates light-activated opsins and channels them into an inactive complex with visual arrestins. Grk1 deficiency leads to human retinopathy and heightened susceptibility to light-induced photoreceptor cell death in the mouse. The goal of this study was to determine whether excess Grk1 activity is pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 24 16  شماره 

صفحات  -

تاریخ انتشار 2015