Fast Multipole Method for the Biharmonic Equation
نویسندگان
چکیده
The evaluation of sums (matrix-vector products) of the solutions of the three-dimensional biharmonic equation can be accelerated using the fast multipole method, while memory requirements can also be significantly reduced. We develop a complete translation theory for these equations. It is shown that translations of elementary solutions of the biharmonic equation can be achieved by considering the translation of a pair of elementary solutions of the Laplace equations. The extension of the theory to the case of polyharmonic equations in R is also discussed. An efficient way of performing the FMM for biharmonic equations using the solution of a complex valued FMM for the Laplace equation is presented. Compared to previous methods presented for the biharmonic equation our method appears more efficient. The theory is implemented and numerical tests presented that demonstrate the performance of the method for varying problem sizes and accuracy requirements. In our implementation, the FMM for the biharmonic equation is faster than direct matrix vector product for a matrix size of 550 for a relative L2 accuracy 22 = 10−4, and N = 3550 for 22 = 10−12.
منابع مشابه
Fast multipole method for the biharmonic equation in three dimensions
The evaluation of sums (matrix–vector products) of the solutions of the three-dimensional biharmonic equation can be accelerated using the fast multipole method, while memory requirements can also be significantly reduced. We develop a complete translation theory for these equations. It is shown that translations of elementary solutions of the biharmonic equation can be achieved by considering ...
متن کاملA fast multipole boundary element method for solving the thin plate bending problem
A fast multipole boundary element method (BEM) for solving large-scale thin plate bending problems is presented in this paper. The method is based on the Kirchhoff thin plate bending theory and the biharmonic equation governing the deflection of the plate. First, the direct boundary integral equations and the conventional BEM for thin plate bending problems are reviewed. Second, the complex not...
متن کاملA Fast Fourier-Galerkin Method Solving a Boundary Integral Equation for the Biharmonic Equation
s of IWANASP, October 22 – 24, 2015, Lagos, Portugal A FAST FOURIER–GALERKIN METHOD SOLVING A BOUNDARY INTEGRAL EQUATION FOR THE BIHARMONIC EQUATION
متن کاملFast Multipole Boundary Element Method of Potential Problems
In order to overcome the difficulties of low computational efficiency and high memory requirement in the conventional boundary element method for solving large-scale potential problems, a fast multipole boundary element method for the problems of Laplace equation is presented. through the multipole expansion and local expansion for the basic solution of the kernel function of the Laplace equati...
متن کاملA Comparative Study of Multipole and Empirical Relations Methods for Effective Index and Dispersion Calculations of Silica-Based Photonic Crystal Fibers
In this paper, we present a solid-core Silica-based photonic crystal fiber (PCF) composed of hexagonal lattice of air-holes and calculate the effective index and chromatic dispersion of PCF for different physical parameters using the empirical relations method (ERM). These results are compared with the data obtained from the conventional multipole method (MPM). Our simulation results reveal tha...
متن کامل