A spectral Monte Carlo method for the Poisson equation

نویسندگان

  • Emmanuel Gobet
  • Sylvain Maire
چکیده

Using a sequential Monte Carlo algorithm, we compute a spectral approximation of the solution of the Poisson equation in dimension 1 and 2. The Feyman-Kac computation of the pointwise solution is achieved using either an integral representation or a modified walk on spheres method. The variances decrease geometrically with the number of steps. A global solution is obtained, accurate up to the interpolation error. Surprisingly, the accuracy depends very little on the absorption layer thickness of the walk on spheres.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Spectral Monte Carlo Method for the Poisson Equation. a Spectral Monte Carlo Method for the Poisson Equation *

Using a sequential Monte Carlo algorithm, we compute a spectral approximation of the solution of the Poisson equation in dimension 1 and 2. The Feyman-Kac computation of the pointwise solution is achieved using either an integral representation or a modified walk on spheres method. The variances decrease geometrically with the number of steps. A global solution is obtained, accurate up to the i...

متن کامل

Some new simulations schemes for the evaluation of Feynman-Kac representations

We describe new variants of the Euler scheme and of the walk on spheres method for the Monte Carlo computation of Feynman–Kac representations. We optimize these variants using quantization for both source and boundary terms. Numerical tests are given on basic examples and on Monte Carlo versions of spectral methods for the Poisson equation. We especially introduce a new stochastic spectral form...

متن کامل

[inria-00182436, v1] Some new simulations schemes for the evaluation of Feynman-Kac representations

We describe new variants of the Euler scheme and of the walk on spheres method for the Monte Carlo computation of Feynman-Kac representations. We optimize these variants using quantization for both source and boundary terms. Numerical tests are given on basic examples and on Monte Carlo versions of spectral methods for the Poisson equation. We especially introduce a new stochastic spectral form...

متن کامل

SOLVING THE BOLTZMANN EQUATION IN N log

In [32, 31], fast deterministic algorithms based on spectral methods were derived for the Boltzmann collision operator for a class of interactions including the hard spheres model in dimension 3. These algorithms are implemented for the solution of the Boltzmann equation in dimension 2 and 3, first for homogeneous solutions, then for general non homogeneous solutions. The results are compared t...

متن کامل

Solving the Boltzmann Equation

In [32, 31], fast deterministic algorithms based on spectral methods were derived for the Boltzmann collision operator for a class of interactions including the hard spheres model in dimension 3. These algorithms are implemented for the solution of the Boltzmann equation in dimension 2 and 3, first for homogeneous solutions, then for general non homogeneous solutions. The results are compared t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Monte Carlo Meth. and Appl.

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2004