Re-examination of the contribution of substrates to energy expenditure during high-intensity intermittent exercise in endurance athletes
نویسندگان
چکیده
BACKGROUND It has been believed that the contribution of fat oxidation to total energy expenditure is becoming negligible at higher exercise intensities (about 85% VO2max). The aim of the present study was to examine the changes in substrate oxidation during high-intensity interval exercise in young adult men. METHODS A total of 18 healthy well-trained (aged 19.60 ± 0.54 years, BMI = 22.19 ± 0.64 kg/m2, n = 10) and untrained (aged 20.25 ± 0.41 years, BMI = 22.78 ± 0.38 kg/m2, n = 8) young men volunteered to participate in this study. After an overnight fast, subjects were tested on a cycle ergometer and completed six 4-min bouts of cycling (at ∼80% VO2max) with 2 min of rests between intervals. Energy expenditure and the substrate oxidation rate were measured during the experiment by using indirect calorimetry. The blood lactate concentration was collected immediately after each interval workout. RESULTS The fat oxidation rate during each workout was significantly different between the untrained and the athlete groups (p < 0.05), and the carbohydrate (CHO) oxidation rate during the experiment was similar between groups (p > 0.05). Moreover, lactate concentration significantly increased in the untrained group (p < 0.05), whereas it did not significantly change in the athlete group during the workouts (p > 0.05). Fat contribution to energy expenditure was significantly higher in the athlete group (∼25%) than in the untrained group (∼2%). CONCLUSIONS The present study indicates that 17 times more fat oxidation was measured in the athlete group compared to the untrained group. However, the athletes had the same CHO oxidation rate as the recreationally active subjects during high-intensity intermittent exercise. Higher fat oxidation rate despite the same CHO oxidation rate may be related to higher performance in the trained group.
منابع مشابه
Effect of blood flow restriction on metabolic rate and fat oxidation during and after high-intensity intermittent exercise in active male students
Background and Aims: Given the role of blood flow restriction in causing more hemodynamic stress, the aim of the present study was to investigate the effect of blood flow restriction on the metabolic rate and substrate oxidation during and after high-intensity intermittent exercise (HIIE) in male active students. Method: For this purpose, 10 male active students, selected and in a cross-over de...
متن کاملThe Relationship between the Isocapnic Buffering Phase and Ventilatory Threshold in Endurance Athletes and Team Sport Athletes during an Incremental Exercise Test
Background. There is sparse literature examining the ICB phase of aerobic- and anaerobic-trained athletes. Measurements of ICB phase values of athletes can help to evaluate the sport’s physiological demands and understand the physiological adaptations in response to physical training. Objectives. The purpose of this study was to examine the relationship between the isocapnic buffering (IC...
متن کاملThe effect of 8 weeks Repeated Sprint Training on buffering system and the results of three different types of recovery
Back ground and aim: Today, Repeated high intensity endurance training is an integral part of the preparation of most team and individual sports, which, if not accompanied by proper recovery during or after physical activity, does not create the necessary adaptations and may Is to harm the athlete's performance under the conditions of competition or training (1, 2). Due to intense repetitive tr...
متن کاملIntermittent hypoxia improves endurance performance and submaximal exercise efficiency.
The purpose of the present study was to elucidate the influence of intermittent hypobaric hypoxia at rest on endurance performance and cardiorespiratory and hematological adaptations in trained endurance athletes. Twelve trained male endurance runners were assigned to either a hypoxic group (n = 6) or a control group (n = 6). The subjects in the hypoxic group were exposed to a simulated altitud...
متن کاملDoes continuous endurance exercise in water elicit a higher release of ANP and BNP and a higher plasma concentration of FFAs in pre-obese and obese men than high intensity intermittent endurance exercise? – Study protocol for a randomized controlled trial
BACKGROUND Atrial natriuretic peptides (ANP) and Brain natriuretic peptides (BNP) stimulate fat cell plasma membrane receptors. They are potent lipolytic agents on isolated fat cells from subcutaneous adipose tissue. The physiological effects of continuous endurance exercise on ANP release and plasma free fatty acids (FFA) concentrations have been well described. The enhancement of fat metaboli...
متن کامل