Structural stability of lithium manganese oxides
نویسندگان
چکیده
We have studied stability of lithium-manganese oxides using density functional theory in the local density and generalized gradient approximation ~GGA!. In particular, the effect of spin-polarization and magnetic ordering on the relative stability of various structures is investigated. At all lithium compositions the effect of spin polarization is large, although it does not affect different structures to the same extent. At composition LiMnO2 , globally stable Jahn-Teller distortions could only be obtained in the spin-polarized GGA approximation, and antiferromagnetic spin ordering was critical to reproduce the orthorhombic LiMnO2 structure as ground state. We also investigate the effect of magnetism on the Li intercalation potential, an important property for rechargeable Li batteries. @S0163-1829~99!00709-2#
منابع مشابه
Developments in Nanostructured Cathode Materials for High-Performance Lithium-Ion Batteries
Nanostructured materials lie at the heart of fundamental advances in efficient energy storage and/or conversion, in which surface processes and transport kinetics play determining roles. This Review describes some recent developments in the synthesis and characterization of nanostructured cathode materials, including lithium transition metal oxides, vanadium oxides, manganese oxides, lithium ph...
متن کاملRecent Advances on the Understanding of Structural and Composition Evolution of LMR Cathodes for Li-ion Batteries
Lithium-and-manganese-rich (LMR) cathode materials have been regarded as very promising for lithium (Li)-ion battery applications. However, their practical application is still limited by several barriers such as their limited electrochemical stability and rate capability. In this work, we present recent progress on the understanding of structural and compositional evolution of LMR cathode mate...
متن کاملStructural and magnetic properties of orthorhombic LixMnO2
Rietveld refinement of the crystal and magnetic structures of LixMnO2 (x 1⁄4 0.98, 1.00, 1.02) are performed using neutron and X-ray measurements. A significant structural disorder due to the presence of manganese ions in lithium positions (MnLi) and lithium ions in manganese ones (LiMn) is found to be a common feature of Li0.98MnO2, Li1.00MnO2, and Li1.02MnO2. An essential anisotropy of the th...
متن کاملRecent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries
Large-scale high-energy batteries with electrode materials made from the Earth-abundant elements are needed to achieve sustainable energy development. On the basis of material abundance, rechargeable sodium batteries with iron- and manganese-based positive electrode materials are the ideal candidates for large-scale batteries. In this review, iron- and manganese-based electrode materials, oxide...
متن کاملCorrelating cation ordering and voltage fade in a lithium-manganese-rich lithium-ion battery cathode oxide: a joint magnetic susceptibility and TEM study.
Structure-electrochemical property correlation is presented for lithium-manganese-rich layered-layered nickel manganese cobalt oxide (LMR-NMC) having composition Li1.2Co0.1Mn0.55Ni0.15O2 (TODA HE5050) in order to examine the possible reasons for voltage fade during short-to-mid-term electrochemical cycling. The Li1.2Co0.1Mn0.55Ni0.15O2 based cathodes were cycled at two different upper cutoff vo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999