Use of corn height measured with an acoustic sensor improves yield estimation with ground based active optical sensors
نویسندگان
چکیده
Corn height measured manually has shown promising results in improving the relationship between active-optical (AO) sensor readings and crop yield. Manual measurement of corn height is not practical in US commercial corn production, so an alternative automatic method must be found in order to capture the benefit of including canopy height into in-season yield estimates and from there into in-season nitrogen (N) fertilizer applications. One existing alternative to measure canopy height is an acoustic height sensor. A commercial acoustic height sensor was utilized in these experiments at two corn growth stages (V6 and V12) along with AO sensors. Eight corn N rate sites in North Dakota, USA, were used to compare the acoustic height sensor as a practical alternative to manual height measurements as an additional parameter to increase the relationship between AO sensor readings and corn yield. Six N treatments, 0, 45, 90, 134, 179, and 224 kg ha , were applied before planting in a randomized complete block experimental design with four replications. Height measurement using the acoustic sensor provided an improved yield relationship compared to manual height at all locations. The level of improvement of the relationship between AO readings multiplied by acoustic sensor readings and yield was greater at V6 growth stage compared to the V12 growth stage. At V12, corn height measured manually and with the acoustic sensor multiplied by AO readings provided similar improvement to the relationship with yield compared to relating AO readings alone with yield at most locations. The acoustic height sensor may be useful in increasing the usefulness of AO sensor corn yield prediction algorithms for use in on-the-go in-season N application to corn particularly if the sensor height is normalized within site before combining multiple locations. 2016 Published by Elsevier B.V.
منابع مشابه
Three Dimensional Localization of an Unknown Target Using Two Heterogeneous Sensors
Heterogeneous wireless sensor networks consist of some different types of sensor nodes deployed in a particular area. Different sensor types can measure different quantity of a source and using the combination of different measurement techniques, the minimum number of necessary sensors is reduced in localization problems. In this paper, we focus on the single source localization in a heterogene...
متن کاملActive-Optical Sensors Using Red NDVI Compared to Red Edge NDVI for Prediction of Corn Grain Yield in North Dakota, U.S.A.
Active-optical sensor readings from an N non-limiting area standard established within a farm field are used to predict yield in the standard. Lower yield predictions from sensor readings obtained from other parts of the field outside of the N non-limiting standard area indicate a need for supplemental N. Active-optical sensor algorithms for predicting corn (Zea mays, L.) yield to direct in-sea...
متن کاملTiO2 based surface acoustic wave gas sensor with modified electrode dimensions for enhanced H2 sensing application
The design and optimization of nanostructure-based surface acoustic wave (SAW) gas sensor is analyzed based on TiO2 sensing layer and modified electrode dimensions. The sensitivity of the gas sensor depends upon the type of sensing layer used and active surface area obtained by varying the aspect ratio. The performance of the sensor is observed from 0.1ppm to 100ppm concentration of ...
متن کاملBy-plant Prediction of Corn Grain Yield Using Optical Sensor Readings and Measured Plant Height
BY-PLANT PREDICTION OF CORN GRAIN YIELD USING OPTICAL SENSOR READINGS AND MEASURED PLANT HEIGHT Kent Martin a , William Raun b & John Solie c a Agronomy Department, Kansas State University, Garden City, Kansas, USA b Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, Oklahoma, USA c Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stil...
متن کاملTarget Tracking with Unknown Maneuvers Using Adaptive Parameter Estimation in Wireless Sensor Networks
Abstract- Tracking a target which is sensed by a collection of randomly deployed, limited-capacity, and short-ranged sensors is a tricky problem and, yet applicable to the empirical world. In this paper, this challenge has been addressed a by introducing a nested algorithm to track a maneuvering target entering the sensor field. In the proposed nested algorithm, different modules are to fulfill...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers and Electronics in Agriculture
دوره 124 شماره
صفحات -
تاریخ انتشار 2016