The Prostaglandin F Synthase Activity of the Human Aldose Reductase AKR1B1 Brings New Lenses to Look at Pathologic Conditions
نویسندگان
چکیده
Prostaglandins are important regulators of female reproductive functions to which aldose reductases exhibiting hydroxysteroid dehydrogenase activity also contribute. Our work on the regulation of reproductive function by prostaglandins (PGs), lead us to the discovery that AKR1B5 and later AKR1B1were highly efficient and physiologically relevant PGF synthases. PGE2 and PGF2α are the main prostanoids produced in the human endometrium and proper balance in their relative production is important for normal menstruation and optimal fertility. Recent evidence suggests that PGE2/EP2 and PGF2α/FP may constitute a functional dyad with physiological relevance comparable to the prostacyclin-thromboxane dyad in the vascular system. We have recently reported that AKR1B1 was expressed and modulated in association with PGF2α production in response to IL-1β in the human endometrium. In the present study, we show that the human AKR1B1 (gene ID: 231) also known as ALDR1 or ALR2 is a functional PGF2α synthase in different models of living cells and tissues. Using human endometrial cells, prostate, and vascular smooth muscle cells, cardiomyocytes and endothelial cells we demonstrate that IL-1β is able to up regulate COX-2 and AKR1B1 proteins as well as PGF2α production under normal glucose concentrations. We show that the promoter activity of AKR1B1 gene is increased by IL-1β particularly around the multiple stress response region containing two putative antioxidant response elements adjacent to TonE and AP1. We also show that AKR1B1 is able to regulate PGE2 production through PGF2α acting on its FP receptor and that aldose reductase inhibitors like alrestatin, Statil (ponalrestat), and EBPC exhibit distinct and characteristic inhibition of PGF2α production in different cell models. The PGF synthase activity of AKR1B1 represents a new and important target to regulate ischemic and inflammatory responses associated with several human pathologies.
منابع مشابه
Melatonin Reduces Cataract Formation and Aldose Reductase Activity in Lenses of Streptozotocin-induced Diabetic Rat
Background: The relationship between the high activity of aldose reductase (AR) and diabetic cataract formation has been previously investigated. The purpose of the present study was to determine the preventing effect of melatonin on streptozotocin (STZ)-induced diabetic cataract in rats.Methods: 34 adult healthy male Sprague-Dawely rats were divided into four groups. Diabetic control and diabe...
متن کاملThe aldo-keto reductase superfamily. cDNAs and deduced amino acid sequences of human aldehyde and aldose reductases.
Aldehyde reductase [EC 1.1.1.2] and aldose reductase [EC 1.1.1.21] are monomeric NADPH-dependent oxidoreductases having wide substrate specificities for carbonyl compounds. These enzymes are implicated in the development of diabetic complications by catalyzing the reduction of glucose to sorbitol. Enzyme inhibition as a direct pharmacokinetic approach to the prevention of diabetic complications...
متن کاملProstaglandin (PG) F2 Alpha Synthesis in Human Subcutaneous and Omental Adipose Tissue: Modulation by Inflammatory Cytokines and Role of the Human Aldose Reductase AKR1B1
INTRODUCTION PGF2α may be involved in the regulation of adipose tissue function. OBJECTIVES 1) To examine PGF2α release by primary preadipocytes, mature adipocytes and whole tissue explants from the subcutaneous and omental fat compartments; 2) To assess which PGF synthase is the most relevant in human adipose tissue. METHODS Fat samples were obtained by surgery in women. PGF2α release by p...
متن کاملAldo-Keto Reductases 1B in Adrenal Cortex Physiology
Aldose reductase (AKR1B) proteins are monomeric enzymes, belonging to the aldo-keto reductase (AKR) superfamily. They perform oxidoreduction of carbonyl groups from a wide variety of substrates, such as aliphatic and aromatic aldehydes or ketones. Due to the involvement of human aldose reductases in pathologies, such as diabetic complications and cancer, AKR1B subgroup enzymatic properties have...
متن کاملAldo-Keto Reductases in the Eye
Aldose reductase (AKR1B1) is an NADPH-dependent aldo-keto reductase best known as the rate-limiting enzyme of the polyol pathway. Accelerated glucose metabolism through this pathway has been implicated in diabetic cataract and retinopathy. Some human tissues contain AKR1B1 as well as AKR1B10, a closely related member of the aldo-keto reductase gene superfamily. This opens the possibility that A...
متن کامل