On strong KKT type sufficient optimality conditions for multiobjective semi-infinite programming problems with vanishing constraints
نویسندگان
چکیده
In this paper, we consider a nonsmooth multiobjective semi-infinite programming problem with vanishing constraints (MOSIPVC). We introduce stationary conditions for the MOSIPVCs and establish the strong Karush-Kuhn-Tucker type sufficient optimality conditions for the MOSIPVC under generalized convexity assumptions.
منابع مشابه
Sufficient global optimality conditions for general mixed integer nonlinear programming problems
In this paper, some KKT type sufficient global optimality conditions for general mixed integer nonlinear programming problems with equality and inequality constraints (MINPP) are established. We achieve this by employing a Lagrange function for MINPP. In addition, verifiable sufficient global optimality conditions for general mixed integer quadratic programming problems are der...
متن کاملCharacterization of Properly Efficient Solutions for Convex Multiobjective Programming with Nondifferentiable vanishing constraints
This paper studies the convex multiobjective optimization problem with vanishing constraints. We introduce a new constraint qualification for these problems, and then a necessary optimality condition for properly efficient solutions is presented. Finally by imposing some assumptions, we show that our necessary condition is also sufficient for proper efficiency. Our results are formula...
متن کاملConvex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions
We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...
متن کاملOptimality conditions and duality for multiobjective semi-infinite programming problems with generalized (C, α, ρ, d)-convexity
This paper deals with a nonlinear multiobjective semi-infinite programming problem involving generalized (C,α, ρ, d)-convex functions. We obtain sufficient optimality conditions and formulate the Mond-Weirtype dual model for the nonlinear multiobjective semi-infinite programming problem. We also establish weak, strong and strict converse duality theorems relating the problem and the dual problem.
متن کاملRegularity Conditions for Non-Differentiable Infinite Programming Problems using Michel-Penot Subdifferential
In this paper we study optimization problems with infinite many inequality constraints on a Banach space where the objective function and the binding constraints are locally Lipschitz. Necessary optimality conditions and regularity conditions are given. Our approach are based on the Michel-Penot subdifferential.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017