Formation and Deposition of Amylose in the Potato Tuber Starch Granule Are Affected by the Reduction of Granule-Bound Starch Synthase Gene Expression.
نویسندگان
چکیده
The synthesis of amylose in amyloplasts is catalyzed by granule-bound starch synthase (GBSS). GBSS gene expression was inhibited via antisense RNA in Agrobacterium rhizogenes-transformed potato plants. Analysis of starch production and starch granule composition in transgenic tubers revealed that reduction of GBSS activity always resulted in a reduction of the production of amylose. Field experiments, performed over a 2-year period, showed that stable inhibition of GBSS gene expression can be obtained. Microscopic evaluation of iodine-stained starch granules was shown to be a sensitive system for qualitative and quantitative examination of amylose formation in starch granules of transgenic potato tubers. In plants showing inhibition of GBSS gene expression, the reduced amylose content in tuber starch was not a consequence of a lower amylose content throughout the entire starch granule. Starch granules of transgenic tubers were found to contain amylose at a percentage similar to wild-type starch in a core of varying size at the hilum of each granule. This indicated that reduced GBSS gene expression results in amylose formation in a restricted zone of the granules. The size of this zone is suggested to be dependent on the GBSS protein level. During development of the granules, the available GBSS protein is thought to become limiting, resulting in the formation of starch that lacks amylose. RNA gel blot analysis of tuber tissue showed that inhibition of GBSS gene expression resulted in a reduced GBSS mRNA level but did not affect the expression level of other starch synthesizing enzymes. Antisense RNA could only be detected in leaf tissue of the transgenic plants.
منابع مشابه
Tissue Specific Expression of Human Calcitonin Gene in Potato Tubers by an Organ Specific Promoter
To increase the production level of heterologous proteins in plants, strategies such as choice of strongerpromoters, optimization of codon usage and specific localization of foreign proteins are of major concern.Calcitonin (CT), a 32 amino acid polypeptide is a powerful and specific inhibitor of bone resorption and isused to treat several human diseases. Calcitonin activity is...
متن کاملThe molecular deposition of transgenically modified starch in the starch granule as imaged by functional microscopy.
The molecular deposition of starch extracted from normal plants and transgenically modified potato lines was investigated using a combination of light microscopy, environmental scanning electron microscopy (ESEM) and confocal laser scanning microscopy (CLSM). ESEM permitted the detailed (10 nm) topographical analysis of starch granules in their hydrated state. CLSM could reveal internal molar d...
متن کاملCharacterization of a granule-bound starch synthase isoform found in the pericarp of wheat.
Waxy wheat (Triticum aestivum L.) lacks the waxy protein, which is also known as granule-bound starch synthase I (GBSSI). The starch granules of waxy wheat endosperm and pollen do not contain amylose and therefore stain red-brown with iodine. However, we observed that starch from pericarp tissue of waxy wheat stained blue-black and contained amylose. Significantly higher starch synthase activit...
متن کاملExpression of a fungal endo-a-1,5-L-arabinanase during stolon differentiation in potato inhibits tuber formation and results in accumulation of starch and tuber-specific transcripts in the stem
Potato (Solanum tuberosum cv. Posmo) was transformed with a fungal endo-a-1,5-L-arabinanase gene (E.C. 3.2.1.99) and the enzyme secreted to the apoplast. Using promoters that are known to be sucrose inducible in potato—the granule bound starch synthase promoter and the promoter of the patatin storage protein gene—strong expression of the arabinanase was observed in developing sinks, notably the...
متن کاملTuber starch amylose content is associated with cold-induced sweetening in potato
Cold-induced sweetening (CIS) is the accumulation of reducing sugars in potato tubers at low storage temperatures. It is undesirable because it results in dark fry products. Our study evaluated the relationship between genetic resistance to CIS and two starch parameters, amylose content and starch granule size. We found that the amylose content in four CIS-resistant varieties was higher than th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 6 1 شماره
صفحات -
تاریخ انتشار 1994