Genetic determinants for n-butanol tolerance in evolved Escherichia coli mutants: cross adaptation and antagonistic pleiotropy between n-butanol and other stressors.
نویسندگان
چکیده
Cross-tolerance and antagonistic pleiotropy have been observed between different complex phenotypes in microbial systems. These relationships between adaptive landscapes are important for the design of industrially relevant strains, which are generally subjected to multiple stressors. In our previous work, we evolved Escherichia coli for enhanced tolerance to the biofuel n-butanol and discovered a molecular mechanism of n-butanol tolerance that also conferred tolerance to the cationic antimicrobial peptide polymyxin B in one specific lineage (green fluorescent protein [GFP] labeled) in the evolved population. In this work, we aim to identify additional mechanisms of n-butanol tolerance in an independent lineage (yellow fluorescent protein [YFP] labeled) from the same evolved population and to further explore potential cross-tolerance and antagonistic pleiotropy between n-butanol tolerance and other industrially relevant stressors. Analysis of the transcriptome data of the YFP-labeled mutants allowed us to discover additional membrane-related and osmotic stress-related genes that confer n-butanol tolerance in E. coli. Interestingly, the n-butanol resistance mechanisms conferred by the membrane-related genes appear to be specific to n-butanol and are in many cases antagonistic with isobutanol and ethanol. Furthermore, the YFP-labeled mutants showed cross-tolerance between n-butanol and osmotic stress, while the GFP-labeled mutants showed antagonistic pleiotropy between n-butanol and osmotic stress tolerance.
منابع مشابه
Genetic improvement of n-butanol tolerance in Escherichia coli by heterologous overexpression of groESL operon from Clostridium acetobutylicum
Strain tolerance to toxic metabolites remains an important issue in the production of biofuels. Here we examined the impact of overexpressing the heterologous groESL chaperone from Clostridium acetobutylicum to enhance the tolerance of Escherichia coli against several stressors. Strain tolerance was identified using strain maximum specific growth rate (μ) and strain growth after a period of sol...
متن کاملLaboratory-Evolved Mutants of an Exogenous Global Regulator, IrrE from Deinococcus radiodurans, Enhance Stress Tolerances of Escherichia coli
BACKGROUND The tolerance of cells toward different stresses is very important for industrial strains of microbes, but difficult to improve by the manipulation of single genes. Traditional methods for enhancing cellular tolerances are inefficient and time-consuming. Recently, approaches employing global transcriptional or translational engineering methods have been increasingly explored. We foun...
متن کاملGenome replication engineering assisted continuous evolution (GREACE) to improve microbial tolerance for biofuels production
BACKGROUND Microbial production of biofuels requires robust cell growth and metabolism under tough conditions. Conventionally, such tolerance phenotypes were engineered through evolutionary engineering using the principle of "Mutagenesis followed-by Selection". The iterative rounds of mutagenesis-selection and frequent manual interventions resulted in discontinuous and inefficient strain improv...
متن کاملGenomic Library Screens for Genes Involved in n-Butanol Tolerance in Escherichia coli
BACKGROUND n-Butanol is a promising emerging biofuel, and recent metabolic engineering efforts have demonstrated the use of several microbial hosts for its production. However, most organisms have very low tolerance to n-butanol (up to 2% (v/v)), limiting the economic viability of this biofuel. The rational engineering of more robust n-butanol production hosts relies upon understanding the mech...
متن کاملDNA microarray of global transcription factor mutant reveals membrane-related proteins involved in n-butanol tolerance in Escherichia coli
BACKGROUND Escherichia coli has been explored as a platform host strain for biofuels production such as butanol. However, the severe toxicity of butanol is considered to be one major limitation for butanol production from E. coli. The goal of this study is therefore to construct butanol-tolerant E. coli strains and clarify the tolerance mechanisms. RESULTS A recombinant E. coli strain harbori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 79 17 شماره
صفحات -
تاریخ انتشار 2013