Tractable Learning and Inference for Large-Scale Probabilistic Boolean Networks
نویسندگان
چکیده
Probabilistic Boolean Networks (PBNs) have been previously proposed so as to gain insights into complex dynamical systems. However, identification of large networks and of the underlying discrete Markov Chain which describes their temporal evolution, still remains a challenge. In this paper, we introduce an equivalent representation for the PBN, the Stochastic Conjunctive Normal Form (SCNF), which paves the way to a scalable learning algorithm and helps predict longrun dynamic behavior of large-scale systems. Moreover, SCNF allows its efficient sampling so as to statistically infer multistep transition probabilities which can provide knowledge on the activity levels of individual nodes in the long run.
منابع مشابه
From Boolean to Probabilistic Boolean Networks as Models of Genetic Regulatory Networks
Mathematical and computational modeling of genetic regulatory networks promises to uncover the fundamental principles governing biological systems in an integrative and holistic manner. It also paves the way toward the development of systematic approaches for effective therapeutic intervention in disease. The central theme in this paper is the Boolean formalism as a building block for modeling ...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملLPKP: location-based probabilistic key pre-distribution scheme for large-scale wireless sensor networks using graph coloring
Communication security of wireless sensor networks is achieved using cryptographic keys assigned to the nodes. Due to resource constraints in such networks, random key pre-distribution schemes are of high interest. Although in most of these schemes no location information is considered, there are scenarios that location information can be obtained by nodes after their deployment. In this paper,...
متن کاملLearning and Inference in Tractable Probabilistic Knowledge Bases
Building efficient large-scale knowledge bases (KBs) is a longstanding goal of AI. KBs need to be first-order to be sufficiently expressive, and probabilistic to handle uncertainty, but these lead to intractable inference. Recently, tractable Markov logic (TML) was proposed as a nontrivial tractable first-order probabilistic representation. This paper describes the first inference and learning ...
متن کاملRelationships between probabilistic Boolean networks and dynamic Bayesian networks as models of gene regulatory networks
A significant amount of attention has recently been focused on modeling of gene regulatory networks. Two frequently used large-scale modeling frameworks are Bayesian networks (BNs) and Boolean networks, the latter one being a special case of its recent stochastic extension, probabilistic Boolean networks (PBNs). PBN is a promising model class that generalizes the standard rule-based interaction...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1801.07693 شماره
صفحات -
تاریخ انتشار 2018