Gradient-free MCMC methods for dynamic causal modelling
نویسندگان
چکیده
In this technical note we compare the performance of four gradient-free MCMC samplers (random walk Metropolis sampling, slice-sampling, adaptive MCMC sampling and population-based MCMC sampling with tempering) in terms of the number of independent samples they can produce per unit computational time. For the Bayesian inversion of a single-node neural mass model, both adaptive and population-based samplers are more efficient compared with random walk Metropolis sampler or slice-sampling; yet adaptive MCMC sampling is more promising in terms of compute time. Slice-sampling yields the highest number of independent samples from the target density - albeit at almost 1000% increase in computational time, in comparison to the most efficient algorithm (i.e., the adaptive MCMC sampler).
منابع مشابه
Gradient-based MCMC samplers for dynamic causal modelling
In this technical note, we derive two MCMC (Markov chain Monte Carlo) samplers for dynamic causal models (DCMs). Specifically, we use (a) Hamiltonian MCMC (HMC-E) where sampling is simulated using Hamilton's equation of motion and (b) Langevin Monte Carlo algorithm (LMC-R and LMC-E) that simulates the Langevin diffusion of samples using gradients either on a Euclidean (E) or on a Riemannian (R)...
متن کاملInversion of hierarchical Bayesian models using Gaussian processes
Over the past decade, computational approaches to neuroimaging have increasingly made use of hierarchical Bayesian models (HBMs), either for inferring on physiological mechanisms underlying fMRI data (e.g., dynamic causal modelling, DCM) or for deriving computational trajectories (from behavioural data) which serve as regressors in general linear models. However, an unresolved problem is that s...
متن کاملControl Variates for Stochastic Gradient MCMC
It is well known that Markov chain Monte Carlo (MCMC) methods scale poorly with dataset size. We compare the performance of two classes of methods which aim to solve this issue: stochastic gradient MCMC (SGMCMC), and divide and conquer methods. We find an SGMCMC method, stochastic gradient Langevin dynamics (SGLD) to be the most robust in these comparisons. This method makes use of a noisy esti...
متن کاملA Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations
Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...
متن کاملA Complete Recipe for Stochastic Gradient MCMC
Many recent Markov chain Monte Carlo (MCMC) samplers leverage continuous dynamics to define a transition kernel that efficiently explores a target distribution. In tandem, a focus has been on devising scalable variants that subsample the data and use stochastic gradients in place of full-data gradients in the dynamic simulations. However, such stochastic gradient MCMC samplers have lagged behin...
متن کامل